Plant expression constructs

Multicellular living organisms and unmodified parts thereof and – Plant – seedling – plant seed – or plant part – per se – Higher plant – seedling – plant seed – or plant part

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S320100, C435S410000, C435S413000, C536S023100, C536S023200, C536S023600, C536S024100, C800S278000

Reexamination Certificate

active

06462258

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the isolation and use of nucleic acid molecules for control of gene expression in plants, specifically novel plant promoters and the combination of these promoters in an expression construct for plants.
BACKGROUND OF THE INVENTION
One of the goals of plant genetic engineering is to produce plants with agronomically important characteristics or traits. Recent advances in genetic engineering have provided the requisite tools to produce transgenic plants that contain and express foreign genes (Kahl et al., World J. of Microbiol. Biotech. 11:449-460, 1995). Particularly desirable traits or qualities of interest for plant genetic engineering would include but are not limited to resistance to insects, fungal diseases, and other pests and disease-causing agents, tolerances to herbicides, enhanced stability or shelf-life, yield, environmental tolerances, and nutritional enhancements. The technological advances in plant transformation and regeneration have enabled researchers to take exogenous DNA, such as a gene or genes from a heterologous or a native source, and incorporate the exogenous DNA into the plant's genome. In one approach, expression of a novel gene that is not normally expressed in a particular plant or plant tissue may confer a desired phenotypic effect. In another approach, transcription of a gene or part of a gene in an antisense orientation may produce a desirable effect by preventing or inhibiting expression of an endogenous gene.
In order to produce a transgenic plant, a construct that includes a heterologous gene sequence that confers a desired phenotype when expressed in the plant is introduced into a plant cell. The construct also includes a plant promoter that is operably linked to the heterologous gene sequence, often a promoter not normally associated with the heterologous gene. The construct is then introduced into a plant cell to produce a transformed plant cell, and the transformed plant cell is regenerated into a transgenic plant. The promoter controls expression of the introduced DNA sequence to which the promoter is operably linked and thus affects the desired characteristic conferred by the DNA sequence.
It would be advantageous to have a variety of promoters to tailor gene expression such that a gene or gene(s) is transcribed efficiently at the right time during plant growth and development, in the optimal location in the plant, and in the amount necessary to produce the desired effect. For example, constitutive expression of a gene product may be beneficial in one location of the plant but less beneficial in another part of the plant. In other cases, it may be beneficial to have a gene product produced at a certain developmental stage of the plant or in response to certain environmental or chemical stimuli. The commercial development of genetically improved germplasm has also advanced to the stage of introducing multiple traits into crop plants, often referred to as a gene stacking approach. In this approach, multiple genes conferring different characteristics of interest can be introduced into a plant. It is important when introducing multiple genes into a plant that each gene is modulated or controlled for optimal expression and that the regulatory elements are diverse in order to reduce the potential of gene silencing. In light of these and other considerations, it is apparent that optimal control of gene expression and regulatory element diversity are important in plant biotechnology.
SUMMARY OF THE INVENTION
The present invention relates to DNA plant expression constructs that comprise Arabidopsis actin (Act) promoter sequences Act1a, Act1b, and the elongation factor 1&agr; (EF1&agr;) promoter sequence, and fragments and cis elements derived from these promoters operably linked to heterologous structural gene sequences that function in crop plant cells.
Thus, according to one embodiment of the invention, a recombinant DNA construct is provided that comprises, in operable linkage, a promoter that is functional in a cell of a crop plant, the promoter comprising: at least one cis element derived from SEQ ID NO:12, SEQ ID NO:22, and SEQ ID NO:23, a structural DNA sequence heterologous to the promoter; and a 3′ non-translated region that functions in plants to cause the addition of polyadenylated nucleotides to the 3′ end of the RNA sequence. For example, the promoter may consist essentially of a 5′ regulatory region derived from any of SEQ ID NO:12, SEQ ID NO:22, and SEQ ID NO:23, (including or excluding any intron sequences located therein). The structural gene may comprise any heterologous nucleotide sequence wherein expression of the sequence results in an agronomically useful trait or product in a transgenic crop plant.
According to another aspect of the invention is a DNA construct comprising a structural DNA sequence operably linked to the promoter sequences of the present invention that encode a protein employed to confer herbicide tolerance to a crop plant. This herbicide tolerance protein includes, but is not limited to glyphosate tolerance protein genes such as a glyphosate resistant EPSP synthase gene alone, or in combination with one or more glyphosate degrading protein genes.
According to another embodiment of the invention, DNA constructs such as those described above are provided wherein the promoter is a hybrid or chimeric promoter comprising at least one cis element derived from one or more of SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, and SEQ ID NO:26 operably linked to a heterologous promoter sequence such as a caulimovirus promoter, for example the Cauliflower mosaic virus 35S promoter or the Figwort mosaic virus promoter.
According to another embodiment of the invention, DNA constructs, such as those described above, are provided in tandem, wherein the promoter is a hybrid or chimeric promoter comprising at least one cis element derived from one or more of SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, and SEQ ID NO:26 operably linked to a heterologous gene sequence that expresses in transgenic crop plant cells. The chimeric promoter sequences more specifically comprising the sequences identified in SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, and SEQ ID NO:30.
According to another embodiment of the invention, a DNA construct such as that described above is provided wherein the structural DNA sequence is a glyphosate tolerance gene, such that when the DNA construct is introduced into a plant cell, it confers to the plant cell tolerance to an aqueous glyphosate formulation that includes at least 50 grams acid equivalent per liter (g a.e./l) of glyphosate. In other related embodiments, the DNA construct confers to the plant cell tolerance to glyphosate formulations having higher glyphosate concentrations (for example, at least 300 grams acid equivalent per liter of glyphosate. According to one embodiment, the DNA construct confers to the plant cell tolerance to at least one application of Roundup Ultra® at a rate of 16 ounces (oz) per acre, for example, and in other embodiments, glyphosate tolerance extends to one to two or more applications of 16 oz per acre, 32 oz per acre, or 64 oz per acre, for example.
According to another embodiment of the invention, transgenic crop plants are provided that are transformed with a DNA construct as described above, including monocot species and dicot species. We have discovered that the Arabidopsis actin and Arabidopsis EF1&agr; promoters are sufficiently active in other crop plant species such as cotton, tomato, and sunflower, for example, that when used to control expression of a glyphosate tolerance gene, such as aroA:CP4, the plants tolerate commercial application rates of glyphosate, exhibiting good vegetative tolerance and low damage to reproductive tissues. Such promoters can also be used to express other genes of interest in plants, including, but not limited to, genes that confer

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Plant expression constructs does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Plant expression constructs, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Plant expression constructs will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2929231

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.