Computer graphics processing and selective visual display system – Display peripheral interface input device – Touch panel
Reexamination Certificate
1999-05-10
2002-08-06
Liang, Regina (Department: 2674)
Computer graphics processing and selective visual display system
Display peripheral interface input device
Touch panel
C178S018090
Reexamination Certificate
active
06429856
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a method and device for inputting/detecting the coordinate position and a display board system and more particularly, to a method and device for inputting/detecting the coordinate position with improved operability and reliability as well as a display board system which uses the coordinate-position inputting/detecting device.
BACKGROUND OF THE INVENTION
Conventionally there has been known a display board which can read freehand information written on a whiteboard or a write-in surface of a write-in sheet with some writing tool using a dedicated scanner and output the read information onto a recording paper with a dedicated printer. While, in recent years, there has also been suggested a display board system In which a coordinate-position inputting/detecting device is provided in a write-in surface of a display board for enabling inputting of freehand information written in the write-in surface in real time.
For instance, the Soft Board manufactured and provided by the Microfield Graphics, Inc. is a device having a coordinate-position inputting/detecting device provided on a whiteboard, and being capable of acquiring visual data Such as characters and pictures drawn on the whiteboard into a computer in real time. With the display board system using this Soft Board, it is possible to input visual data captured with the Soft Board into a computer for displaying the data on a CRT thereof, to display the data on a large-sized screen using a liquid crystal projector, or to output the data with a printer onto a recording paper. It is also possible to project an image on a screen of a computer with the Soft Board connected thereto onto the Soft Board with a liquid crystal projector and operate the computer on the screen of the Soft Board.
There has also been disclosed a display board system having a display unit for displaying characters and images thereon, a coordinate-position inputting/detecting device with a coordinate-position input surface (a touch panel) provided on a front surface of the display unit, and a control unit for providing controls over display by the display unit according to input from the coordinate-position inputting/detecting device. This system forms a display surface and a write-in surface of the display board by making use of the display unit and the touch input device.
For instance, in a case of the Smart 2000 manufactured and supplied by the SMART Technologies Inc., in a state where an image of a character, a picture, or a graphics is projected with a liquid crystal projector connected to a computer onto a panel, freehand information is captured into the computer using a coordinate-position inputting/detecting device (write-in surface) provided on a front surface of the projection surface (display surface) of the panel. Then, the freehand information is synthesized with the image information in the computer, and the synthesized information can be displayed again with the liquid crystal projector in real time.
There has been disclosed a display board system in the U.S. patent application Ser. No. 9/299,052 (filing date Apr. 4, 1999), the contents of which are incorporated in the present invention by reference.
The a display board system can display an image inputted by the coordinate-position inputting/detecting device superimposed on an image on the screen displayed by the display unit as an overwrite image, so that the display board system has been used for conferences, presentation, or educational purposes and its effect in actual use has been highly evaluated. When a communicating function for transferring audio or video data is integrated with the display board system as described above, the display board system can also be used as an electronic conference system by connecting remote sites with a communication line.
By the way, as a coordinate-position inputting/detecting device used in the display board system as described above, devices described below are known according to a difference between input methods thereof. As a first case, there is a coordinate-position inputting/detecting device having a coordinate-position input surface with wires provided in a grid pattern in the X-Y direction and a dedicated pen for generating a magnetic field and used in a state where a current is passed through the wire. In this coordinate-position inputting/detecting device, when a user points to a desired position by making a dedicated pen contact or bringing the same closer to the coordinate-position input surface for some input operation, an electrical change is generated at the pointed position. The coordinate-position inputting/detecting device detects the coordinates of the position pointed by the dedicated pen according to electrical changes generated as described above on the coordinate-position input surface, and executes the processing of inputting the detected coordinates into a computer.
As a second case, there is a coordinate-position inputting/detecting device having a coordinate-position input surface with a resistive film such as conductive rubber. In this coordinate-position inputting/detecting device, when a user points to a desired position by making a pen contact the coordinate-position input surface for some input operation, a resistance value at the pointed position changes due to the pressure applied to the coordinate-position input surface by the pen. The coordinate-position inputting/detecting device detects the coordinates of the position pointed by the pen according to a change in the resistance values on the coordinate-position input surface, and executes the processing of inputting the detected coordinates into a computer.
Furthermore, as a third case, there is known an optical type of coordinate-position inputting/detecting device having at least two light emitting sections each for emitting a light beam through, for example, a rotating polygon mirror and scanning a coordinate-position input surface with the emitted light beam (Refer to Japanese Patent Laid-Open Publication No. SHO 57-211637). At least two light receiving sections are provided for receiving the light beam reflected with a dedicated pen having a reflecting member provided at the tip thereof inserted in a coordinate-position input surface. It should be noted that the coordinate-position input surface of the coordinate-position inputting/detecting device is not a physical surface like the coordinate-position input surface of the coordinate-position inputting/detecting device in the first and second cases, but is a surface formed with the light beams emitted from the light emitting sections. In this coordinate-position inputting/detecting device, when a user points a desired position on the coordinate-position input surface with the dedicated pen for some input operation, the light beams emitted from the light emitting sections are reflected by the reflecting member of the dedicated pen. The coordinate-position inputting/detecting device receives the reflected light beams, detects the coordinates of the position pointed by the user using the principle of triangulation, and executes the processing of inputting the detected coordinates into a computer.
Of those coordinate-position inputting/detecting devices described above, the optical type of coordinate-position inputting/detecting device described as the third case seems a promising device to us after consideration on an appropriate system to be applied in the a display board system. More specifically, the coordinate-position inputting/detecting device according to the first case has a problem associated with operability in a display board system requiring a large type of coordinate-position inputting/detecting device because a dedicated pen which generates a magnetic field and a main body of the device are connected to each other through a cable. The coordinate-position inputting/detecting devices in the first and second cases have problem that transparency of the coordinate-position input surface is reduced because wire or a resistive film has to be provided on th
Omura Katsuyuki
Tanaka Makoto
Tsuda Kunikazu
Liang Regina
Ricoh & Company, Ltd.
LandOfFree
Coordinate position inputting/detecting device, a method for... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Coordinate position inputting/detecting device, a method for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Coordinate position inputting/detecting device, a method for... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2928668