Diagnostic apparatus

Surgery – Diagnostic testing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06409661

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to diagnostic apparatus.
A preferred embodiment of the invention as described herein is for use in aircraft for the diagnosis of medical emergencies, on aircraft in flight, of humans. However, the invention is not limited to that. The medical diagnostic apparatus may be useful on animals, especially mammals. The medical diagnostic apparatus may be used on other vehicles, e.g. ships, and may be useful on land especially in locations remote from medical help.
BACKGROUND
U.S. Pat. No. 5441047 (DAVID et al) discloses a patient health monitoring system for use in homes of patients. A two-way audio and video (A/V) link is established between the patients home and a remote care centre using a camera and a standard TV set in the home linked by e.g. a cable television network to a monitor and camera respectively in the care centre. In addition a plurality of medical sensors for sensing medical data of the patient are provided in the home, for example in a special chair in which the patient sits, and linked by a monitor equipment including a modem and a telephone line to the care centre. The monitor equipment may have a display for displaying the sensed medical data: the camera may be used to view the display instead of transmitting the data via the telephone line. A nurse in the care centre examines the medical data. The nurse and the patient can see each other and talk to each other via the A/V link. The A/V link could be via modem through telephone lines. The video signal and/or the medical data may be transmitted by satellite and/or radio transmission.
WO 94/24929 (HEALTHDYNE, INC.) disclose a patient monitoring and support system for monitoring a plurality of patients located at locations remote from a care centre. At each patient site, there is a base unit, which can be connected to a plurality of sensors for producing medical data relating to the patient's medical state. The base unit stores the medical data and transfers it to the care centre where it is stored and analysed. Care providers at the centre monitor the patients. The base unit comprises a housing containing, inter alia, the medical sensors, an IBM compatible personal computer, an LCD display and a modem for transferring data to and from the care centre via a telephone line. The LCD display displays sensed medical data and instructions to the patient on the use of the monitoring system. A standard telephone set may be connected to the telephone line.
SUMMARY OF THE INVENTION
According to the present invention there is provided Diagnostic Apparatus comprising:
a plurality of sensing means for sensing data of a body;
means for producing and reproducing voice signals, the producing and reproducing means being arranged to be used by an operator hands-free;
a first communications means coupled to the producing and reproducing means, and a second communications means;
display means; and
processing means arranged to
i) process the sensed data , ii) display the processed data on the display means, iii) control the first and second communications means to automatically establish respective links to a remote location, and iv) supply the processed data to the second communications means;
the apparatus being arranged so that in use two-way voice communication is established between the said operator and an expert at the remote location and the sensed data is transferred to the remote location via the second communications link to allow the said expert to diagnose the condition of the body and to communicate the diagnosis to the said operator.
Preferably, the apparatus is a medical diagnostic apparatus, the body is that of a human and the expert is a medical expert. The invention and the embodiments will be discussed hereinafter and by way of example to such medical diagnostic apparatus.
The apparatus according to the invention, thus integrates the elements of the apparatus into a single system controlled by the processor (unlike the system of David et al), and automatically establishes both two-way voice communication with, and simultaneous data transfer to, the remote location (unlike the system of Healthdyne) providing ease of use with a minimum of involvement by the operator and of swift access in an emergency to medical advice based on an analysis of the transferred medical data.
In a preferred embodiment of the invention, the apparatus is portable. Most preferably the whole portable apparatus is housed in a container.
In a preferred embodiment of the invention the data and voice signals are arranged to be transferred via the Public Switched Telephone Network (PSTN). In the currently preferred embodiment the processor is arranged to auto-dial the remote location once the operator has initiated the auto-dial function of the apparatus.
In an embodiment of the invention, ease of use is enhanced by providing a head-up display for displaying the processed medical data to the operator and preferably also for displaying instructions on the operation of the apparatus. An additional display, e.g. an LCD display panel, is preferably provided to allow an assistant to view the processed data and the operating instructions.
Preferably the apparatus is arranged to automatically ‘boot-up’ to its operating state automatically on power-up without intervention by the operator.
Preferably the operator is provided with a simplified key-pad (instead of a full keyboard) with the minimum of keys needed to operate the apparatus. The key-pad may be worn on the wrist like a watch. A full keyboard is unnecessary for operating the apparatus and would take up unnecessary space which may be severely restricted such as in an aircraft.
Preferably, a camera is provided to produce images to aid diagnosis. The camera is preferably a digital video camera from which the processing means grabs still images for transmission to the remote location. The camera may be strapped to the wrist of the operator for ease of use.
The said first and second communications means may be low-power wireless transmitter/receivers such as modified CT
2
, DECT, or spread-spectrum (such as CDMA) cordless phones which communicate over a short distance and which are linked to long range communications channels. In for example a large aircraft, a cabin telephone unit CTU is present. On current aircraft there are telephones on bulkheads or on seat-backs. Such phones are wired to the CTU. The phones have telephone sockets (RJ45 sockets) in them to allow other telephonic equipment to be connected to them. In use of the present apparatus, cordless base stations corresponding to the cordless phones are plugged into the telephone sockets.
Alternatively the first and second communications means are telephone cables which plug into the telephone sockets. Preferably, both cables and low-power wireless transmitter/receivers such as modified CT
2
, DECT or CDMA cordless phones are provided and the operator simply plugs the cables into the seat jacks. Most preferably the apparatus comprises means for automatically sensing whether the cables or the low-power wireless transmitter/receivers are operating on the aircraft and for routing the data and voice signals appropriately: this eases the use of the apparatus. The CTU links for example to a satellite communications channel which in turn links to the PSTN. In-flight communications systems other than satellite systems are available and their use is within the scope of the invention.
It is possible that the CTU is a cordless unit. Then the cordless phones may communicate with it direct. Alternatively, appropriate cordless base stations may be installed in the CTU.
The provision of cordless phones allows the apparatus to be used anywhere in the aircraft without the need for long cables. Furthermore, the provision of cordlessphones and the ability to plug cords into any nearby phone on an aircraft allows the diagnostic apparatus to be at the seat of a patient avoiding the need to move the patient.
The medical sensors preferably comprise a 12 lead ECG array, a temperature sensor, a pulse oximeter

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Diagnostic apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Diagnostic apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Diagnostic apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2926959

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.