Edge lift reduction for belt type transports

Typewriting machines – Sheet or web

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C347S104000, C271S276000, C400S635000

Reexamination Certificate

active

06497522

ABSTRACT:

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable.
REFERENCE TO AN APPENDIX
Not Applicable.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to vacuum transport belt apparatus, such as useful in ink-jet hard copy apparatus and methods of operation and, even more specifically, to a vacuum transport belt system providing edge lift control and, preferably, substantial elimination of all edge lift.
2. Description of Related Art
It is known to use a vacuum induced force to adhere a sheet of flexible material to a surface, for example, transporting sheet metal, holding a sheet of print media temporarily to a transport system or platen, and the like. (Hereinafter, “vacuum induced force” is also referred to as “vacuum induced flow, “vacuum flow,” or more simply as just “airflow,” “vacuum” or “suction,” as best fits the context.) Such vacuum holddown systems are a relatively common, economical technology to implement commercially and, in printing technology, can improve hard copy apparatus throughput specifications. For example, it is known to provide a rotating drum with holes through the surface wherein a vacuum type airflow through the chamber formed by the drum cylinder provides a suction force at the holes in the drum surface (see e.g., U.S. Pat. No. 4,237,466 for a PAPER TRANSPORT SYSTEM FOR AN INK JET PRINTER (Scranton) or U.S. Pat. No. 5,081,506 for a TRANSFER SYSTEM FOR A COLOR PRINTER (Borostyan)). (The term “drum” as used hereinafter is intended to be synonymous with any curvilinear implementation incorporating the present invention; while the term “platen” can be defined as a flat holding surface, in hard copy technology it is also used for curvilinear surfaces, e.g., the ubiquitous typewriter rubber roller; thus, for the purposes of the present application, “platen” is used generically for any shape paper holddown surface—stationary or movable—as used in a hard copy apparatus.) Permeable belts traversing a vacuum inducing support have been similarly employed (see e.g., Scranton and U.S. patent application Ser. No. 09/163,098 by Rasmussen et al. for a BELT DRIVEN MEDIA HANDLING SYSTEM WITH FEEDBACK CONTROL FOR IMPROVING MEDIA ADVANCE ACCURACY (assigned to the common assignee of the present invention and incorporated herein by reference)).
Generally in a hard copy apparatus implementation, the vacuum device is used either to support cut-sheet print media during transport to and from a printing station (also known as the “print zone” or “printing zone”) of a hard copy apparatus, to hold the sheet media at the printing station while images or alphanumeric text are formed, or both. (In order to further simplify description of the technology and invention, the term “paper” is used hereinafter to refer to all types of print media and the term “printer” to refer to all types of hard copy apparatus; no limitation on the scope of the invention is intended nor should any be implied.)
In essence, the ink-jet printing process involves digitized, dot-matrix manipulation of drops of ink, or other liquid colorant, ejected from a pen onto an adjacent paper. One or more ink-jet type writing instruments (also referred to in the art as an “ink-jet pen” or “print cartridge”) include a printhead which generally consists of drop generator mechanisms and a number of columns of ink drop firing nozzles. Each column or selected subset of nozzles (referred to in the art as a “primitive”) selectively fires ink droplets (typically each being only a few picoliters in liquid volume) that are used to create a predetermined print matrix of dots on the adjacently positioned paper as the pen is scanned across the media. A given nozzle of the printhead is used to address a given matrix column print position on the paper (referred to as a picture element, or “pixel”). Horizontal positions, matrix pixel rows, on the paper are addressed by repeatedly firing a given nozzle at matrix row print positions as the pen is scanned. Thus, a single sweep scan of the pen across the paper can print a swath of dots. The paper is stepped to permit a series of contiguous swaths. Dot matrix manipulation is used to form alphanumeric characters, graphical images, and even photographic reproductions from the ink drops. Page-wide ink-jet printheads are also contemplated and are adaptable to the present invention.
A well-known phenomenon of wet-colorant printing is “paper cockle,” the irregular surface produced in paper by the saturation and drying of ink deposits on the fibrous medium. As a sheet of paper gets saturated with ink, the paper grows and buckles in a seemingly random manner. Paper printed with images are more saturated with colorant than simple text pages and thus exhibit great paper cockle. Colors formed by mixing combinations of other color ink drops form greater localized saturation areas and also exhibit greater cockle tendencies.
As the ink-jet writing instruments—often scanning at a relatively high rate across the paper—expel minute droplets of ink onto adjacently positioned print media and sophisticated, computerized, dot matrix manipulation is used to render text and form graphic images, the flight trajectory of each drop is critical to print quality. Printing errors (also referred to in the art as “artifacts”) are induced or exacerbated by any airflow in the printing zone. Thus, use of a vacuum platen and vacuum transport device in the printing zone of an ink-jet printer creates an added difficulty for the system designer. One solution to the problem is set out in common assignee's pending application U.S. patent application Ser. No. 09/514,830, filed on Feb. 28, 2000, for a LOW FLOW VACUUM PLATEN FOR AN INK-JET HARD COPY APPARATUS. In essence, it employs a platen having an array of vacuum ports that are each filtered. The filter is constructed to provide restricted airflow such that media holddown pressure remains substantially uniform when the platen is either fully covered or partially uncovered. The filter mechanism provides airflow restrictions such that ink drop flight trajectories in the printing zone are unaffected, acoustic dampening of the vacuum pump is provided, and vacuum pressure is kept relatively high at the print media edges.
Moreover, in general there has been found that a problem exists where near the side edges of the vacuum transport belt lifting of the belt off the subjacent platen occurs. The higher the speed of the belt, the larger the dimensions of the belt, the greater the problem. The problem has been found to be most egregious at any cross-belt seam(s). For a printer, the problem is that if the belt lifts from the platen along the belt side edges, the pen-to-paper must be increased to prevent the pen from catching which could damage the belt and possibly damage or destroy the pen. At the same time, to improve throughput, it is advantageous to have the belt move as quickly as possible to off-load a printed sheet and advance a next sheet to the print zone. Moreover, if a heated platen is employed to assist in drying ink on the transported media in either or all of the pre-print, print, and post-print zones, lifting of the belt can interrupt conductive heating via the belt to the media. One common known manner solution is to provide physical edge guides. However, this adds piece part to manufacture, increasing cost and complexity.
There is still a need for a commercial, low-cost, vacuum system for use in an ink-jet printing zone which will assist in minimizing cockle and provide a minimal airflow impact on ink-jet drop flight trajectory. There is a further need for a vacuum system for controlling and substantially eliminating belt edge lifting.
BRIEF SUMMARY OF THE INVENTION
In its basic aspect, the present invention provides a vacuum platen system for transporting a sheet material, including: a platen having first ports permitting airflow therethrough at predetermined positions of a surface thereof; a vacuum device associated with the platen and inducing the airflow; and a transport belt superjacent the sur

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Edge lift reduction for belt type transports does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Edge lift reduction for belt type transports, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Edge lift reduction for belt type transports will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2926375

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.