Compounds, processes and intermediates for synthesis of...

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S023100

Reexamination Certificate

active

06462184

ABSTRACT:

FIELD OF THE INVENTION
The present invention is directed to methods for oxidizing an H-phosphonate internucleoside linkage in a compound which has at least one 2′-substituent group. This invention further relates to methods for the preparation of mixed backbone oligomeric compounds having internucleoside linkages including phosphodiester, phosphorothioate, phosphoramidate and boranophosphate linkages. The present invention also relates to synthetic intermediates useful in such methods. Also included are mixed backbone oligomeric compounds having phosphodiester and boranophosphate internucleoside linkages or phosphodiester and boranophosphate internucleoside linkages in combination with other internucleoside linkages such as phosphorothioate and phosphoramidate internucleoside linkages. The methods of the present invention include a novel oxidation step that allows oxidation of a region having one or more H-phosphonate is internucleoside linkages to phosphodiester internucleoside linkages without degradation of adjacent phosphorothioate, phosphoramidate or boranophosphate internucleoside linkages.
BACKGROUND OF THE INVENTION
Oligonucleotides and their analogs have been developed and used in molecular biology in a variety of procedures as probes, primers, linkers, adapters, and gene fragments. Modifications to oligonucleotides used in these procedures include labeling with nonisotopic labels, e.g., fluorescein, biotin, digoxigenin, alkaline phosphatase or other reporter molecules. Other modifications have been made to the ribose phosphate backbone to increase the nuclease stability of the resulting analog. Examples of such modifications include incorporation of methyl phosphonate, phosphorothioate, or phosphorodithioate linkages, and 2′-O-methyl ribose sugar units. Further modifications include those made to modulate uptake and cellular distribution. With the success of these compounds for both diagnostic and therapeutic uses, there exists an ongoing demand for improved oligonucleotides, their analogs and synthetic processes for their preparation.
It is well known that most of the bodily states in multicellular organisms, including most disease states, are effected by proteins. Such proteins, either acting directly or through their enzymatic or other functions, contribute in major proportion to many diseases and regulatory functions in animals and man. For disease states, classical therapeutics has generally focused upon interactions with such proteins in efforts to moderate their disease-causing or disease-potentiating functions. In newer therapeutic approaches, modulation of the actual production of such proteins is desired. By interfering with the production of proteins, the maximum therapeutic effect may be obtained with minimal side effects. It is therefore a general object of such therapeutic approaches to interfere with or otherwise modulate gene expression, which would lead to undesired protein formation.
One method for inhibiting specific gene expression is via the use of oligonucleotides, especially oligonucleotides which are complementary to a specific target messenger RNA (mRNA) sequence. Several oligonucleotides are currently undergoing clinical trials for such use. Phosphorothioate oligonucleotides are presently being used as such antisense agents in human clinical trials for various disease states, including use as antiviral agents.
Transcription factors interact with double-stranded DNA during regulation of transcription. Oligonucleotides can serve as competitive inhibitors of transcription factors to modulate their action. Several recent reports describe such interactions. Bielinska, et al.,
Science,
1990, 250, 997-1000; and Wu, et al.,
Gene,
1990, 89, 203-209.
In addition to their use as indirect and direct regulators of proteins, oligonucleotides and their analogs also have found use in diagnostic tests. Such diagnostic tests can be performed using biological fluids, tissues, intact cells or isolated cellular components. As with inhibition of gene expression, diagnostic applications utilize the ability of oligonucleotides and their analogs to hybridize with a complementary strand of nucleic acid. Hybridization is the sequence-specific hydrogen bonding of oligomeric compounds via Watson-Crick and/or Hoogsteen base pairs to RNA or DNA. The bases of such base pairs are said to be complementary to one another.
Oligonucleotides and their analogs are also widely used as research reagents. They are useful for understanding the function of many other biological molecules as well as in the preparation of other biological molecules. For example, the use of oligonucleotides and their analogs as primers in PCR reactions has given rise to an expanding commercial industry. PCR has become a mainstay of commercial and research laboratories, and applications of PCR have multiplied. For example, PCR technology now finds use in the fields of forensics, paleontology, evolutionary studies and genetic counseling. Commercialization has led to the development of kits which assist non-molecular biology-trained personnel in applying PCR. Oligonucleotides and their analogs, both natural and synthetic, are employed as primers in such PCR technology.
Oligonucleotides and their analogs are also used in other laboratory procedures. Several of these uses are described in common laboratory manuals such as
Molecular Cloning, A Laboratory Manual,
Second Ed., Sambrook et al., Eds., Cold Spring Harbor Laboratory Press, 1989; and
Current Protocols In Molecular Biology,
Ausubel et al., Eds., Current Publications, 1993. Such uses include as synthetic oligonucleotide probes, in screening expression libraries with antibodies and oligomeric compounds, DNA sequencing, in vitro amplification of DNA by the polymerase chain reaction, and in site-directed mutagenesis of cloned DNA. See Book 2 of
Molecular Cloning A Laboratory Manual,
supra. See, also, “DNA-protein interactions and The Polymerase Chain Reaction” in Vol. 2 of
Current Protocols In Molecular Biology,
supra.
Oligonucleotides and their analogs can be synthesized to have customized properties that can be tailored for desired uses. Thus a number of chemical modifications have been introduced into oligomeric compounds to increase their usefulness in diagnostics, as research reagents and as therapeutic entities. Such modifications include those designed to increase binding to a target strand (i.e., increase their melting temperatures, Tm), to assist in identification of the oligonucleotide or an oligonucleotide-target complex, to increase cell penetration, to stabilize against nucleases and other enzymes that degrade or interfere with the structure or activity of the oligonucleotides and their analogs, to provide a mode of disruption (terminating event) once sequence-specifically bound to a target, and to improve the pharmacokinetic properties of the oligonucleotide.
The chemical literature discloses numerous processes for coupling nucleosides through phosphorous-containing covalent linkages to produce oligonucleotides of defined sequence. One such method utilizes H-phosphonate monomers to prepare oliogmeric compounds. The standard H-phosphonate method has been used for the synthesis of uniformly modified oligomeric compounds containing phosphodiester, phosphorothioate or phosphoramidate internucleoside linkages. The method has not been effective for the synthesis of mixed backbone oligomers because during the oxidation step previously oxidized regions in an oligomer are degraded. Such degradation has been observed for the oxidation of oligomers having phosphorothioate and or phosphoramidate internucleoside linkages when further H-phosphonate internucleoside linkages are oxidized to phosphodiester linkages.
H-phosphonate methods and techniques are disclosed in numerous publications. See, Mackie and Hogrefe,
Glen Research, H-phosphonate Chemistry,
Glen Research Corp, Va.; Wada et al.,
J. Am. Chem. Soc.,
1997, 119, 12710-12721; and Sergueev et al.,
J. Am. Chem. Soc.,
1998, 120, 9417-9427.
Phosphoramidate oligodeoxynucleot

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Compounds, processes and intermediates for synthesis of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Compounds, processes and intermediates for synthesis of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compounds, processes and intermediates for synthesis of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2925266

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.