MMIC airbridge balun transformer

Inductor devices – Coil or coil turn supports or spacers – Printed circuit-type coil

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C336S232000, C336S223000, C029S602100, C029S606000

Reexamination Certificate

active

06476704

ABSTRACT:

FIELD OF THE INVENTION
This application relates to the field of electronics and more particularly to monolithic microwave integrated circuit (MMIC) balun transformers.
BACKGROUND OF THE INVENTION
Transformers are electric devices that transfer electric energy from one alternating-current circuit to one or more other circuits to increase (step-up) or diminish (step-down) the voltage. This transfer of energy is accomplished through electromagnetic mutual induction: a time varying current through the primary conductor produces a time varying magnetic flux through the secondary conductor. As a consequence of Faraday's Law of Induction, this changing flux induces an electromotive force (emf) in the secondary conductor that gives rise to a current. The voltage in the secondary conductor is typically given by the ratio of the number of windings of the secondary conductor to the number of windings in the primary conductor multiplied by the voltage of the primary conductor. If this so-called turn's ratio is greater than unity, the result is a step-up transformer that augments the primary voltage; if it is less than unity the result is a step-down transformer.
Balun transformers, devices for matching an unbalanced line (coax) to a balanced load (e.g., an antenna), have various applications. For example, modern wireless communications products such as cellular telephones, satellite receivers, and pagers require balun transformers to change from single ended to differential circuit forms in critical circuit functions such as balanced mixers. Balun transformers are needed to change impedence levels between stages while maintaining DC isolation between stages of a differential circuit. Balun transformers also find use in transmitters, providing signal isolation between local oscillators and radio frequency (RF) and intermediate frequency (IF) sections of a balanced upconverter, or coupling output pagers require balun transformers to change from single ended to differential circuit forms in critical circuit functions such as balanced mixers. Balun transformers are needed to change impedence levels between stages while maintaining DC isolation between stages of a differential circuit. Balun transformers also find use in transmitters, providing signal isolation between local oscillators and radio frequency (RF) and intermediate frequency (IF) sections of a balanced upconverter, or coupling output stages of a push-pull power amplifier. Other applications include discriminators, phase detectors, and antenna feeds.
It is desirable to perform the function of a balanced transformer with a high degree of electrical symmetry to maintain circuit isolation, and to provide broadband frequency response. It is also advantageous that these performance features be achieved with a device that is compatible with other components manufactured in monolithic microwave integrated circuit (MMIC) form, to achieve integration of balanced circuits.
MMIC balun transformers have been made in the past by first placing the primary and secondary conductors beside each other on the surface of a GaAs substrate, and then wrapping up this structure to produce a two-conductor spiral as shown below in FIG.
2
. However, a problem arises with this approach because both conductors are in intimate contact with the substrate. As a result, this coplanar geometry gives rise to substantial inter-winding capacitance, which limits the operating bandwidth of the device. This effect is most dramatic in step up transformer applications, which employ a high secondary impedance level, and is most sensitive to stray capacitive loading effects. Trying to overcome this problem by increasing the spacing between the conductors to reduce the capacitance has the drawback of increasing the area occupied by the transformer, and also reducing the magnetic coupling coefficient between the primary and secondary conductors. Moreover, these known approaches do not give rise to the symmetrical circuits important in balanced devices such as upconverters, downconverters, and frequency multipliers. Taking a different tack of using active circuit techniques to develop balanced signals gives rise to other problems including consuming precious battery current, injecting noise, and not exhibiting true broadband symmetry.
As mentioned above, transformers rely on the principle of mutual inductance whereby a changing current in a primary conductor gives rise to an emf in a secondary conductor. Inductors, on the other hand, which only have a single conductor, rely on self inductance to operate, and are important electronic devices in their own right. The most common type of inductor consists of a single coil of a conductor, the windings of which are tightly packed together along the surface of a cylinder. The tightly wound turns of the conductor help increase the inductance: each of the windings contributes an emf and also contributes to the magnetic flux through the coil. Hence, increasing the number of windings by a factor of N increases the self-inductance by a factor of N
2
. Thus, any innovation that can pack more windings into less space would give rise to a more desirable inductor. It is desirable to reduce the inter winding capacitance between the turns of an inductor to increase its self resonant frequency, and thusly increase the bandwidth over which the component behaves substantially as an inductor.
SUMMARY OF THE INVENTION
The invention addresses the aforementioned problems by providing balun transformers that place the secondary windings of the transformer above the primary windings on supporting posts. In one particular embodiment, the balun transformers described herein have two tiers of octagonal windings, one mounted on top of the other. The technology used to achieve this configuration is the same MMIC technology commonly used for crossovers. This MMIC technology is well established and can be found, for example, in many GaAs foundries used to make contacts to the top plate of thin film capacitors. Thus, no costly processing steps employing additional insulating layers (and increasing the primary to secondary capacitance) are required to realize the benefits of a symmetrical balun transformer.
With minor modifications, the present invention can also result in an inductor. In particular, by connecting the primary and secondary conductors in series, the result is a new inductor that is able to pack an increased number of windings into a defined, small area leading to desirable electronic characteristics, such as large inductances. Often, increasing the number of windings by a factor of N, increases inductive effects by a factor of N
2
, as is the case for the common inductor, composed of a close-packed helical coil, which can be formed by tightly winding a conducting wire around a cylinder's surface. For such an inductor, it is well known that the inductance is given, in MKS units, by &mgr;n
2
1A, where &mgr; is the permeability constant, n is the number of windings per unit length, and 1 and A are the length and cross-sectional area of the coil, respectively. Thus, being able to pack more windings in a given volume can be expected to yield significant increases in the inductance.
More particularly, the systems described herein can include balun transformers having primary and secondary conductors, with a dielectric in between, such that each of the conductors lies in different, but parallel planes. The conductors have windings to promote the exchange of electromagnetic energy via mutual inductance. The system described herein can also include a balun transformer having an approximately planar secondary conductor, such that the secondary conductor has a large inductance arising from winding the secondary conductor in a relatively small volume of space that provides more effective flux linkages.
In various embodiments, the secondary conductor can be supported by posts standing on pedestals, the dielectric can be air, the windings of the primary conductor can be wider than those of the secondary conductor, or curve beneath the secondar

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

MMIC airbridge balun transformer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with MMIC airbridge balun transformer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and MMIC airbridge balun transformer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2923417

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.