System and method for bypassing data from egress facilities

Multiplex communications – Pathfinding or routing – Switching a message which includes an address header

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S352000, C370S354000, C370S493000, C379S230000, C379S265080

Reexamination Certificate

active

06442169

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to telecommunications networks and, more particularly, to a system and method for the signaling, routing and other manipulation of voice and data calls within the public switched telephone network.
2. Related Art
Telecommunication networks were originally designed to connect one device, such as a telephone, to another device using switching services. Circuit-switched networks provide a dedicated, fixed amount of capacity (a “circuit”) between two devices for the entire duration of a transmission session.
Originally, a circuit was created manually, i.e., by a direct connection from a calling party to a human operator (a “ring down”) along with human cross-connection by the operator to a called party.
More recently, a circuit is set up between an originating switch and a destination switch using a process known as signaling. Signaling sets up, monitors, and releases connections in a circuit-switched system. Different signaling methods have been devised. Telephone systems formerly used in-band signaling to set up and “tear down” calls. Signals of an in-band signaling system are passed through the same channels as the information being transmitted. Early electromechanical switches used analog or multi-frequency (MF) in-band signaling. Thereafter, conventional residential telephones used in-band dual-tone multiple frequency (DTMF) signaling to connect to an end office switch. Here, the same wires (and frequencies on the wires) were used to dial a number (using pulses or tones), as are used to transmit voice information. However, in-band signaling permitted unscrupulous callers to use a device such as a whistle to mimic signaling sounds to commit fraud (e.g., to prematurely discontinue billing by an interexchange carrier (IXC), also known as long distance telephone company).
More recently, to prevent such fraud, out-of-band signaling systems were introduced that use, for example, a packet network for signaling that is separate from the circuit switched network used for carrying information. For example, integrated services digital network (ISDN) uses a separate channel, a data (D) channel, to pass signaling information out-of-band. Common Channel Interoffice Signaling (CCIS) is a network architecture for out-of-band signaling. A popular version of CCIS signaling is Signaling System 7 (SS7). SS7 is an internationally recognized system optimized for use in digital telecommunications networks.
SS7 out-of-band signaling provided additional benefits beyond fraud prevention. For example, out-of-band signaling eased quick adoption of advanced features (e.g., caller-id) by permitting modifications to the separate signaling network. In addition, the SS7 network enabled long distance “Equal Access” (i.e., 1+dialing for access to any long distance carrier) as required under the terms of the modified final judgment (MFJ) requiring divestiture of the Regional Bell Operating Companies (RBOCs) from their parent company, AT&T.
While SS7 and other out-of-band signaling systems have advantages over in-band systems, they still have deficiencies. For example, the SS7 network is still more like X.25 rather than a broadband network. Also, SS7 is a limited protocol in that it only addresses setup, teardown, and monitoring of calls.
An SS7 network includes a variety of components. Service Switch Points (SSPs) are telephone offices which are directly connected to an SS7 network. All calls must originate in or be routed through an SSP switch. Calls are passed through connections between SSPs within the telecommunications network. A Signal Transfer Point (STP) is a component which passes signals between SSPs, other STPs, and Service Control Points (SCPs) for processing. An STP is a special application packet switch which operates to pass signaling information. Two STPs may be used together to provide redundancy.
An SCP is a special application computer which maintains information in a database required by users of the network. SCP databases may include, for example, a credit card database for verifying charge information or an “800” database for processing toll-free calls. The components in the SS7 network are connected by links. Typically, links between SSPs and STPs can be, for example, A, B, C, D, E or F links. Typically, redundant links are also used for connecting an SSP and its corresponding STPs. Customer premises equipment (CPE), such as a telephone, are connected to an SSP or an end office (EO).
To initiate a call in an SS7 telecommunications network, a calling party using a telephone connected to an originating end office (EO) switch, dials a telephone number of a called party. The telephone number is passed from the telephone to the SSP at the originating end office (referred to as the “ingress EO”) of the calling party's local exchange carrier (LEC). A LEC is commonly referred to as a local telephone company. First, the SSP will process triggers and internal route rules based on satisfaction of certain criteria. Second, the SSP will initiate further signals to another EO or access tandem (AT), for example, if necessary. The signaling information can be passed from the SSP to STPs, which route the signals for communication between the ingress EO and the terminating end office, or egress EO. The egress EO has a port designated by the telephone number of the called party. The call is set up as a direct connection between the EOs through tandem switches if no direct trunking exists or if direct trunking is full. If the call is a long distance call, i.e., between a calling party and a called party located in different local access transport areas (LATAs), then the call is connected through an inter exchange carrier (IXC) switch of any of a number of long distance companies. Such a long distance call is commonly referred to as an inter-LATA call. LECs and IXCs are collectively referred to as the public switched telephone network (PSTN).
Emergence of a competitive LEC (CLEC) was facilitated by passage of the Telecommunications Act of 1996, which authorized competition in the local phone service market. Traditional LECs or RBOCs are now also known as incumbent LECs (ILECs). Thus, CLECs compete with ILECs in providing local exchange services. A large cost associated with setting up and operating a CLEC is the equipment needed to circuit switch data and voice calls.
Since the LECs handle both voice and data communications, large amounts of information are communicated. Bandwidth concerns are always present. The PSTN still has deficiencies, particularly with regard to data communications, for such problems as network congestion and bottlenecks.
The PSTN is ill-equipped to handle the integration of data and voice communications. Today, data and voice calls are sent through the same network. Data communications are presently layered on top of voice switching.
Circuit switching is the process of setting up and keeping a circuit open between two or more users, such that the users have exclusive and full use of the circuit until the connection is released. Packet switching is like circuit switching in that it can also switch information between users. Unlike circuit switching, packet switching does not leave a circuit open on a dedicated basis. Packet switching has conventionally been a data switching technique. Packet switching separates a communication into pieces called packets. A packet can contain addressing information, such as, for example, a destination address. In packet switching, the addresses of a packet are read by a switch and the packet is then routed down a path toward a switch associated with the destination address. Different packets can take diverse paths to reach the eventual destination. Typically, in the last switching office before the packets reach the destination user, the packets can be assembled and sequenced.
A channel, also known as a circuit, is a 64 (Kbps) building block of T
1
series. A circuit is derived from the digitization and coding of analog signals. Digitization involves

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for bypassing data from egress facilities does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for bypassing data from egress facilities, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for bypassing data from egress facilities will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2917519

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.