System with fan speed synchronization control

Pumps – Condition responsive control of pump drive motor – Plural pumps having separate drive motors – supply sources,...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C417S003000, C417S042000, C417S044100

Reexamination Certificate

active

06428282

ABSTRACT:

THE FIELD OF THE INVENTION
The present invention generally relates to controlling a rotational speed of cooling fans in a system, and more particularly to synchronizing the rotational speeds of multiple cooling fans to one or more reference frequencies in a system, such as a computer system.
BACKGROUND OF THE INVENTION
Electronic systems, such as computer systems, include electronic components, such as microprocessors, memory, disk drives, integrated circuit chips, peripheral components, power supplies, and the like. The electronic components can generate excessive heat which needs to be dissipated from the electronic system. Therefore, such electronic systems typically include one or more cooling fans to remove heat generated within a housing of the system to reduce a temperature inside the housing.
Some conventional computer systems control the rotational speed of cooling fans based on ambient temperature of the external environment outside the housing of the computer system or internal temperature inside the housing. A typical speed controller reduces the rotational speed of the cooling fans when high rotational speed in not required to reduce audio noise. In addition, by operating the cooling fans at lower rotational speeds when high rotational speed is not required, power consumption is reduced and fan wear is reduced. When the external environment ambient temperature increases above normal room temperature, the internal temperature inside the computer system housing increases unless the cooling fans are operated at a faster rotational speed to further cool the inside of the housing. When the computer system is operated in a normal room temperature or cooler environment, the cooling fans can be operated at a reduced rotational speed.
Conventional computer systems with multiple cooling fans do not synchronize the multiple cooling fans to operate at the same rotational speed, which causes a variety of problems. For example, beat frequencies are created between fan air flows, fan motor assemblies, and/or chassis vibration from motor housing beats energizing the chassis resonance frequencies. These beat frequencies result in an increased amount of acoustical noise being produced by the computer system. In addition, cooling fans which are not speed synchronized do not perform the same amount of work in moving air causing some fans to be overburdened while other fans are underburdened. Furthermore, the variation in the fan rotational speeds can result in uneven air flow which creates weak or dead spots in the input air plenum. Variation in fan rotational speeds can widen as computer systems age, because as a cooling fan ages and wears, a bearing friction in a motor of the cooling fan tends to increase which leads to reduced rotational speeds of the fan.
For reasons stated above and for other reasons presented in greater detail in the Description of the Preferred Embodiments section of the present specification, an electronic system, such as a computer system, is desired which synchronizes the rotational speeds of cooling fans employed by the system.
SUMMARY OF THE INVENTION
The present invention provides a system having a housing and N fans. Each fan has a fan motor and fan blades. The fan motor operates to rotate the fan blades at a variable rotational speed to reduce a temperature inside of the housing. A frequency generator generates a reference speed signal having a reference frequency and a reference phase. The system also includes N tachometers and N motor controllers. Each tachometer measures the variable rotational speed of the fan blades of a corresponding one of the N fans and provides a fan speed signal representative of the variable rotational speed. The fan speed signal has a fan frequency and a fan phase. Each motor controller controls the variable rotational speed of the fan blades of a corresponding one of the N fans based on the reference speed signal and the fan speed signal.
In one embodiment of the system, a phase detection circuit measures a difference between the reference phase and the fan phase to provide a phase difference signal. An instantaneous velocity difference circuit measures an instantaneous difference between the reference frequency and the fan frequency to provide an instantaneous velocity difference signal. An integral velocity difference circuit measures an integral difference between the reference frequency and the fan frequency to provide an integral velocity difference signal. An adder adds the phase difference signal, the instantaneous velocity difference signal, and the integral velocity difference signal to provide a voltage control signal for controlling the variable rotational speed of the fan blades of the corresponding fan.
In one embodiment of the system, a pulse width modulation (PWM) controller controls power supplied to the corresponding fan motor based on the voltage control signal. A lock detector detects whether the PLL controller is in lock. The lock detector provides an indication of a fan failure when the lock detector fails to detect a lock condition for a selected time interval.
In one embodiment, the instantaneous velocity difference circuit includes a first pulse generator responsive to the reference speed signal for generating reference speed pulses having a first state for a first time width T1. A first filter filters the reference speed pulses to generate a reference speed voltage representative of a duty cycle of the reference speed pulses. A second pulse generator responds to the fan speed signal for generating fan speed pulses having a second state opposite to the first state for the first time width T1. A second filter filters the fan speed pulses to generate a fan speed voltage representative of a duty cycle of the fan speed pulses. An adder sums the reference speed voltage and the fan speed voltage to provide a summed voltage representative of the instantaneous difference between the reference frequency and the fan frequency.
In one embodiment, the integral velocity difference circuit receives a reference clock signal and includes and an up/down counter and a digital-to-analog converter (DAC). The up/down counter provides an updated digital count value in response to each active transition of the reference clock signal. If the reference speed signal and the fan speed signal have the same logic state for that active clock transition, the count value is maintained at its current state. If the reference speed signal is at an active logic state and the fan speed signal is at an inactive logic state for that active clock transition, the count value is incremented by one binary value. If the fan speed signal is at an active logic state and the reference speed signal is at an inactive logic state for that active clock transition, the count value is decremented by one binary value. The DAC converts the digital count value from the up/down counter to an analog voltage level representative of the integral difference between the reference frequency and the fan frequency.
In one embodiment, the least significant bit of the digital count value represents phase difference information indicative of a difference between the reference phase and the fan phase. A filter filters the least significant bit of the digital count value to generate an analog voltage representative of a duty cycle of active states of the least significant bit of the digital count value.
A system, such as a computer system, according to the present invention synchronizes the rotational speeds of cooling fans employed by the system, which substantially eliminates possible beat frequencies between fan air flows, fan motor assemblies, and/or chassis vibration from motor housing beats energizing the chassis resonance frequencies to reduce acoustical noise produced by the system. Synchronizing the cooling fans to the same rotational speed, assures that all cooling fans perform substantially the same amount of work in moving air inside housing of the system and assures that air flow throughout the housing is even. Since the cooling fans are locked to the re

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System with fan speed synchronization control does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System with fan speed synchronization control, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System with fan speed synchronization control will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2914791

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.