Data processing: database and file management or data structures – Database design – Data structure types
Reexamination Certificate
2001-09-28
2002-07-02
Mizrahi, Diane D. (Department: 2171)
Data processing: database and file management or data structures
Database design
Data structure types
C707S793000, C707S793000, C707S793000, C714S001000
Reexamination Certificate
active
06415292
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Technical Field
This application relates to computer storage devices, and more particularly to communication between storage devices.
2. Description of Related Art
Host processor systems may store and retrieve data using a storage device containing a plurality of host interface units (host adapters), disk drives, and disk interface units (disk adapters). Such storage devices are provided, for example, by EMC Corporation of Hopkinton, Mass. and disclosed in U.S. Pat. No. 5,206,939 to Yanai et al., U.S. Pat. No. 5,778,394 to Galtzur et al., U.S. Pat. No. 5,845,147 to Vishlitzky et al., and U.S. Pat. No. 5,857,208 to Ofek. The host systems access the storage device through a plurality of channels provided therewith. Host systems provide data and access control information through the channels to the storage device and the storage device provides data to the host systems also through the channels. The host systems do not address the disk drives of the storage device directly, but rather, access what appears to the host systems as a plurality of logical disk units. The logical disk units may or may nor correspond to the actual disk drives. Allowing multiple host systems to access the single storage device unit allows the host systems to share data stored therein.
In some instances, it may be desirable to copy data from one storage device to another. For example, if a host writes data to a first storage device, it may be desirable to copy that data to a second storage device provided in a different location so that if a disaster occurs that renders the first storage device inoperable, the host (or another host) may resume operation using the data of the second storage device. Such a capability is provided, for example, by the Remote Data Facility (RDF) product provided by EMC Corporation of Hopkinton, Mass. With RDF, a first storage device, denoted the “primary storage device” is coupled to the host. One or more other storage devices, called “secondary storage devices” receive copies of the data that is written to the primary storage device by the host. The host interacts directly with the primary storage device, but any data changes made to the primary storage device are automatically provided to the one or more secondary storage devices using RDF. The primary and secondary storage devices may be connected by a data link, such as an ESCON link. The RDF functionality may be facilitated with an RDF adapter (RA) provided at each of the storage devices.
RDF allows synchronous data transfer where, after data written from a host to a primary storage device is transferred from the primary storage device to a secondary storage device using RDF, receipt is acknowledged by the secondary storage device to the primary storage device which then provides a write acknowledge back to the host. Thus, in synchronous mode, the host does not receive a write acknowledge from the primary storage device until the RDF transfer to the secondary storage device has been completed and acknowledged by the secondary storage device.
A drawback to the synchronous RDF system is that the latency of each of the write operations is increased by waiting for the acknowledgement of the RDF transfer. This problem is worse when there is a long distance between the primary storage device and the secondary storage device; because of transmission delays, the time delay required for making the RDF transfer and then waiting for an acknowledgement back after the transfer is complete may be unacceptable.
It is also possible to use RDF in an a semi-synchronous mode, in which case the data is written from the host to the primary storage device which acknowledges the write immediately and then, at the same time, begins the process of transferring the data to the secondary storage device. Thus, for a single transfer of data, this scheme overcomes some of the disadvantages of using RDF in the synchronous mode. However, for data integrity purposes, the asynchronous transfer mode does not allow the primary storage device to transfer data to the secondary storage device until a previous transfer is acknowledged by the secondary storage device. Thus, the bottlenecks associated with using RDF in the synchronous mode are simply delayed by one iteration because transfer of a second amount of data cannot occur until transfer of previous data has been acknowledged by the secondary storage device.
Another possibility is to have the host write data to the primary storage device in asynchronous mode and have the primary storage device copy data to the secondary storage device in the background. The background copy involves cycling through each of the tracks of the primary storage device sequentially and, when it is determined that a particular block has been modified since the last time that block was copied, the block is transferred from the primary storage device to the secondary storage device. Although this mechanism may attenuate the latency problem associated with synchronous and semi-synchronous data transfer modes, a difficulty still exists because there can not be a guarantee of data consistency between the primary and secondary storage devices. If there are problems, such as a failure of the primary system, the secondary system may end up with out-of-order changes that make the data unusable.
Thus, it would be desirable to have an RDF system that exhibits some of the beneficial qualities of each of the different techniques discussed above without the drawbacks. Such a system would exhibit low latency for each host write regardless of the distance between the primary and the secondary and would provide consistency (recoverability) of the secondary in case of failure.
SUMMARY OF THE INVENTION
According to the present invention, transmitting data from a source to a destination, includes receiving the data from the source and providing the data to the destination using a network, where the data is acknowledged to the source as being successfully received at the destination prior to all of the data being provided to the network. The source may be a primary storage device. The destination may be a secondary storage device. The data may be provided from the source in a first format and may be provided to the network in a second format that is different from the first format where the first format may be RDF and the second format may be TCP/IP or UDP. The destination may receive the data in a first format different from a second format used to transmit the data over the network. The first format may be RDF and the second format may be TCP/IP or UDP.
According further to the present invention, a device that transmits data from a source to a destination includes means for receiving the data from the source and means for providing the data to the destination using a network, where the data is acknowledged to the source as being successfully received at the destination prior to all of the data being provided to the network. The source may be a primary storage device. The destination may be a secondary storage device. The data may be provided from the source in a first format and provided to the network in a second format that is different from the first format. The first format may be RDF format and the second format may be TCP/IP or UDP. The device may include means for the destination receiving the data in a first format different from a second format used to transmit the data over the network where the first format may be RDF and the second format may be TCP/IP or UDP.
According further to the present invention, a computer program product that transmits data from a source to a destination includes executable code that receives the data from the source and executable code that provides the data to the destination using a network, wherein the data is acknowledged to the source as being successfully received at the destination prior to all of the data being provided to the network. The source may be a primary storage device, The destination may be a secondary storage device. The data may be provided from the source
EMC Corporation
Hutchins, Wheeler & Dittmar
Mizrahi Diane D.
LandOfFree
Shuttle-based mechanism for numbering concurrent chains of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Shuttle-based mechanism for numbering concurrent chains of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Shuttle-based mechanism for numbering concurrent chains of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2913985