Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Nitrogen containing compound doai
Reexamination Certificate
2001-03-09
2002-08-13
Acquah, Samuel A. (Department: 1711)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Nitrogen containing compound doai
C528S397000, C528S422000, C525S328200, C525S328400, C525S359300, C525S359500
Reexamination Certificate
active
06433026
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates to removing bile salts from a patient.
Salts of bile acids act as detergents to solubilize and consequently aid in digestion of dietary fats. Bile acids are precursors to bile salts, and are derived from cholesterol. Following digestion, bile acids can be passively absorbed in the jejunum, or, in the case of conjugated primary bile acids, reabsorbed by active transport in the ileum. Bile acids which are not reabsorbed by active transport are deconjugated and dehydroxylated by bacterial action in the distal ileum and large intestine.
Reabsorption of bile acids from the intestine conserves lipoprotein cholesterol in the bloodstream. Conversely, blood cholesterol level can be diminished by reducing reabsorption of bile acids.
One method of reducing the amount of bile acids that are reabsorbed is oral administration of compounds that sequester the bile acids and cannot themselves be absorbed. The sequestered bile acids consequently either decompose by bacterial action or are excreted.
Many bile acid sequestrants, however, bind relatively hydrophobic bile acids more avidly than conjugated primary bile acids, such as conjugated cholic and chenodeoxycholic acids. Further, active transport in the ileum causes substantial portions of sequestered conjugated primary bile acids to be desorbed and to enter the free bile acid pool for reabsorption. In addition, the volume of sequestrants that can be ingested safely is limited. As a result, the effectiveness of sequestrants to diminish blood cholesterol levels is also limited.
Sequestering and removing bile salts (e.g., cholate, glycocholate, glycochenocholate, taurocholate, and deoxycholate salts) in a patient can be used to reduce the patient's cholesterol level. Because the biological precursor to bile salt is cholesterol, the metabolism of cholesterol to make bile salts is accompanied by a simultaneous reduction in the cholesterol in the patient.
Cholestyramine, a polystyrene/divinylbenzene ammonium ion exchange resin, when ingested, removes bile salts via the digestive tract. This resin, however, is unpalatable, gritty and constipating. Resins which avoid (totally or partially) these disadvantages and/or possess improved bile salt sequestration properties are needed.
SUMMARY OF THE INVENTION
The invention relates to the discovery that a new class of ion exchange resins have improved bile salt sequestration properties and little to no grittiness, thereby improving the palatability of the composition.
The resins comprise cross-linked polyamines which are characterized by one or more hydrophobic substituents and, optionally, one or more quaternary ammonium containing substituents.
In general, the invention features resins and their use in removing bile salts from a patient that includes administering to the patient a therapeutically effective amount of the reaction product of:
(a) one or more crosslinked polymers, salts and copolymers thereof characterized by a repeat unit selected from the group consisting essentially of:
(NR—CH
2
CH
2
)
n
(3)
(NR—CH
2
CH
2
—NR—CH
2
CH
2
—NR—CH
2
CHOH—CH
2
)
n
(4)
where n is a positive integer and each R, independently, is H or a substituted or unsubstituted alkyl group (e.g., C
1
-C
8
alkyl); and
(b) at least one alkylating agent. The reaction product is characterized in that: (i) at least some of the nitrogen atoms in the repeat units are unreacted with the alkylating agent; (ii) less than 10 mol % of the nitrogen atoms in the repeat units that react with the alkylating agent form quaternary ammonium units; and (iii) the reaction product is preferably non-toxic and stable once ingested.
Suitable substituents include quaternary ammonium, amine, alkylamine, dialkylamine, hydroxy, alkoxy, halogen, carboxamide, sulfonamide and carboxylic acid ester, for example.
In preferred embodiments, the polyamine of compound (a) of the reaction product is crosslinked by means of a multifunctional crosslinking agent, the agent being present in an amount from about 0.5-25% (more preferably about 2.5-20% (most preferably 1-10%)) by weight, based upon total weight or monomer plus crosslinking agent. A preferred crosslinking agent is epichlorohydrin because of its high availability and low cost. Epichlorohydrin is also advantageous because of it's low molecular weight and hydrophilic nature, increasing the water-swellability and gel properties of the polyamine.
The invention also features compositions based upon the above-described reaction products.
The invention provides an effective treatment for removing bile salts from a patient (and thereby reducing the patient's cholesterol level). The compositions are non-toxic and stable when ingested in therapeutically effective amounts.
Other features and advantages will be apparent from the following description of the preferred embodiments thereof and from the claims.
DETAILED DESCRIPTION OF THE INVENTION
Compositions
Preferred reaction products include the products of one or more crosslinked polymers having the formulae set forth in the Summary of the Invention, above, and one or more alkylating agents. The polymers are crosslinked. The level of crosslinking makes the polymers completely insoluble and thus limits the activity of the alkylated reaction product to the gastrointestinal tract only. Thus, the compositions are non-systemic in their activity and will lead to reduced side-effects in the patient.
By “non-toxic” it is meant that when ingested in therapeutically effective amounts neither the reaction products nor any ions released into the body upon ion exchange are harmful. Cross-linking the polymer renders the polymer substantially resistant to absorption. When the polymer is administered as a salt, the cationic counterions are preferably selected to minimize adverse effects on the patient, as is more particularly described below.
By “stable” it is meant that when ingested in therapeutically effective amounts the reaction products do not dissolve or otherwise decompose in vivo to form potentially harmful by-products, and remain substantially intact so that they can transport material out of the body.
By “salt” it is meant that the nitrogen group in the repeat unit is protonated to create a positively charged nitrogen atom associated with a negatively charged counterion.
By “alkylating agent” it is meant a reactant which, when reacted with the crosslinked polymer, causes an alkyl group or derivative thereof (e.g., a substituted alkyl, such as an aralkyl, hydroxyalkyl, alkylammonium salt, alkylamide, or combination thereof) to be covalently bound to one or more of the nitrogen atoms of the polymer.
One example of preferred polymer is characterized by a repeat unit having the formula
or a salt or copolymer thereof; wherein x is zero or an integer between about 1 to 4.
A second example of a preferred polymer is characterized by a repeat unit having the formula
(NH—CH
2
CH
2
)
n
(6)
or a salt or copolymer thereof.
A third example of a preferred polymer is characterized by a repeat unit having the formula
(NH—CH
2
CH
2
—NH—CH
2
CH
2
—NH—CH
2
CHOH—CH
2
)
n
(7)
or a salt or copolymer thereof.
The polymers are preferably crosslinked prior to alkylation. Examples of suitable crosslinking agents include acryloyl chloride, epichlorohydrin, butanedioldiglycidyl ether, ethanedioldiglycidyl ether, and dimethyl succinate. The amount of crosslinking agent is typically between 0.5 and 25 weight %, based upon combined weight of crosslinking agent and monomer, with 2.5-20%, or 1-10%, being preferred.
Typically, the amount of crosslinking agent that is reacted with the amine polymer is sufficient to cause reaction of between about 0.5 and twenty percent of the amines. In a preferred embodiment, between about 0.5 and six percent of the amine groups react with the crosslinking agent.
Crosslinking of the polymer can be achieved by reacting the polymer with a suitable crosslinking agent in an aqueous caustic solution at about 25° C. for a period of time of about eighte
Holmes-Farley Stephen Randall
Mandeville, III W. Harry
Acquah Samuel A.
GelTex Pharmaceuticals Inc.
Hamilton Brook Smith & Reynolds P.C.
LandOfFree
Process for removing bile salts from a patient and alkylated... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for removing bile salts from a patient and alkylated..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for removing bile salts from a patient and alkylated... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2913725