Methods for preparing CLA isomers

Organic compounds -- part of the class 532-570 series – Organic compounds – Fatty compounds having an acid moiety which contains the...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C554S125000

Reexamination Certificate

active

06380409

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to lipid biochemistry, and in particular to the preparation of various isomers of conjugated linoleic acid.
BACKGROUND OF THE INVENTION
In 1978, researchers at the University of Wisconsin discovered the identity of a substance contained in cooked beef that appeared to inhibit mutagenesis. The substance was found to be a mixture of positional isomers of linoleic acid (C18:2) having conjugated double bonds. The c9,t11 and t10,c12 isomers are present in greatest abundance, but it is uncertain which isomers are responsible for the biological activity observed. It has been noted from labelled uptake studies that the 9,11 isomer appears to be somewhat preferentially taken up and incorporated into the phospholipid fraction of animal tissues, and to a lesser extent the 10,12 isomer (Ha, et al., Cancer Res., 50: 1097 [1990]).
The biological activity associated with conjugated linoleic acids (termed CLA) is diverse and complex. At present, very little is known about the mechanisms of action, although several preclinical and clinical studies in progress are likely to shed new light on the physiological and biochemical modes of action. The anticarcinogenic properties of CLA have been well documented. Administration of CLA inhibits rat mammary tumorigenesis, as demonstrated by Birt, et al., Cancer Res., 52: 2035s [1992]. Ha, et al., supra, reported similar results in a mouse forestomach neoplasia model. CLA has also been identified as a strong cytotoxic agent against target human melanoma, colorectal and breast cancer cells in vitro.
Although the mechanisms of CLA action are still obscure, there is evidence that some component(s) of the immune system may be involved, at least in vivo. U.S. Pat. No. 5,585,400 (Cook, et al., incorporated herein by reference), discloses a method for attenuating allergic reactions in animals mediated by type I or IgE hypersensitivity by administering a diet containing CLA. CLA in concentrations of about 0.1 to 1.0 percent was also shown to be an effective adjuvant in preserving white blood cells. U.S. Pat. No. 5,674,901 (Cook, et al., incorporated herein by reference), disclosed that oral or parenteral administration of CLA in either free acid or salt form resulted in elevation in CD-4 and CD-8 lymphocyte subpopulations associated with cell-mediated immunity. Adverse effects arising from pretreatment with exogenous tumor necrosis factor could be alleviated indirectly by elevation or maintenance of levels of CD-4 and CD-8 cells in animals to which CLA was administered. Finally, U.S. Pat. No. 5,430,066 (Cook, et al., incorporated herein by reference), describes the effect of CLA in preventing weight loss and anorexia by immune stimulation.
Apart from potential therapeutic and pharmacologic applications of CLA as set forth above, there has been much excitement regarding the use of CLA as a dietary supplement. CLA has been found to exert a profound generalized effect on body composition, in particular redirecting the partitioning of fat and lean tissue mass. U.S. Pat. No. 5,554,646 (Cook, et al., incorporated herein by reference), discloses a method utilizing CLA as a dietary supplement in which pigs, mice, and humans were fed diets containing 0.5 percent CLA. In each species, a significant drop in fat content was observed with a concomitant increase in protein mass. It is interesting that in these animals, increasing the fatty acid content of the diet by addition of CLA resulted in no increase in body weight, but was associated with a redistribution of fat and lean within the body. Another dietary phenomenon of interest is the effect of CLA supplementation on feed conversion. U.S. Pat. No. 5,428,072 (Cook, et al., incorporated herein by reference), provided data showing that incorporation of CLA into animal feed (birds and mammals) increased the efficiency of feed conversion leading to greater weight gain in the CLA supplemented birds and mammals. The potential beneficial effects of CLA supplementation for food animal growers is apparent.
Another important source of interest in CLA, and one which underscores its early commercial potential, is that it is naturally occurring in foods and feeds consumed by humans and animals alike. In particular, CLA is abundant in products from ruminants. For example, several studies have been conducted in which CLA has been surveyed in various dairy products. Aneja, et al., (J. Dairy Sci., 43: 231 [1990]) observed that processing of milk into yogurt resulted in a concentration of CLA. (Shanta, et al., Food Chem., 47: 257 [1993]) showed that a combined increase in processing temperature and addition of whey increased CLA concentration during preparation of processed cheese. In a separate study, Shanta, et al., J. Food Sci., (60: 695 [1995]) reported that while processing and storage conditions did not appreciably reduce CLA concentrations, they did not observe any increases. In fact, several studies have indicated that seasonal or interanimal variation can account for as much as three fold differences in CLA content of cows milk (See e.g., Parodi, et al., J. Dairy Sci., 60: 1550 [1977]). Also, dietary factors have been implicated in CLA content variation (Chin, et al., J. Food Comp. Anal., 5: 185 [1992]). Because of this variation in CLA content in natural sources, ingestion of prescribed amounts of various foods will not guarantee that the individual or animal will receive the optimum doses to ensure achieving the desired nutritive effect.
In the development of a defined commercial source of CLA for both therapeutic and nutritional applications, a process for generating large amounts of defined material is needed. The problem with most CLA products made by conventional approaches is their heterogeneity, and substantial variation in isoform from batch to batch. A recent publication documents this variation and indicates the need for producers of CLA to appreciate the complex nature of their products (See Christie et al., JAOCS, 74(11): 1231 [1997]).
Considerable attention has also been given to the fact that the ingestion of large amounts of hydrogenated oils and shortenings, instead of animal tallow, results in diets high in trans-fatty acid content. For example, Holman, et al., (Proc. Nat'l. Acad. Sci., 88:4830 [1991]) showed that rats fed hydrogenated oils gave rise to an accumulation in rat liver of unusual polyunsaturated fatty acid isomers, which appeared to interfere with the normal metabolism of naturally occurring polyunsaturated fatty acids. Therefore, there exists a strong need for chemical and biological analysis of the various isomers of CLA.
SUMMARY OF THE INVENTION
The present invention relates to lipid biochemistry, and in particular to the preparation of various isomers of conjugated linoleic (octadecadienoic) acid. The present invention is not limited to the production of any particular octadecadienoic acid isomer. Indeed, a variety isomers may be prepared including, but not limited to, c9,t11 octadecadienoic acid, t8,c10 octadecadienoic acid, t10,c12 octadecadienoic acid, c11,t13 octadecadienoic acid, c7,t9 octadecadienoic acid, t6,c8 octadecadienoic acid, t11,c13 octadecadienoic acid, c12,t14 octadecadienoic acid, c6,t8 octadecadienoic acid, t5,c6 octadecadienoic acid, c5,t7 octadecadienoic acid, t4,c6 octadecadienoic acid, t3,c5 octadecadienoic acid, t12,c14 octadecadienoic acid, c13,t15 octadecadienoic acid, and 14,t16 octadecadienoic acid. The isomers can be provided as free fatty acids, alkylesters, or triglycerides.
In other embodiments, the present invention provides a composition comprising isomers of conjugated linoleic acid, wherein the composition comprises or consists essentially of at least 25% of a first isomer of octadecadienoic acid and at least 25% of a sister isomer of said first isomer. The present invention is not limited to any one pair of sister isomers. Indeed, a variety of sister isomer pairs are contemplated, including, but not limited to, c9

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for preparing CLA isomers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for preparing CLA isomers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for preparing CLA isomers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2912615

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.