Process for making an ink jet image display

Adhesive bonding and miscellaneous chemical manufacture – Methods – Surface bonding and/or assembly therefor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C156S308200, C156S331700, C346S135100, C347S105000

Reexamination Certificate

active

06423173

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a process of making an ink jet image display, more particularly to process of making an ink jet image display using a recording element which contains adhesive particles.
BACKGROUND OF THE INVENTION
In a typical ink jet recording or printing system, ink droplets are ejected from a nozzle at high speed towards a recording element or medium to produce an image on the medium. The ink droplets, or recording liquid, generally comprise a recording agent, such as a dye or pigment, and a large amount of solvent. The solvent, or carrier liquid, typically is made up of water, an organic material such as a monohydric alcohol, a polyhydric alcohol or mixtures thereof.
An ink jet recording element typically comprises a support having on at least one surface thereof a base layer for absorbing fluid and an ink-receiving or image-forming layer, and includes those intended for reflection viewing, which have an opaque support, and those intended for viewing by transmitted light, which have a transparent support.
It is often desirable to bond an ink jet image via the front surface, i.e., the ink-receiving surface, onto another substrate to form a final bonded composite. Such imaged and bonded composites find utility in a variety of image display applications. For example, an inkjet image could be printed on a transparent support and mounted onto a rigid opaque substrate to provide a rigid composite for direct viewing through the transparent support. An ink jet image could also be printed onto a light-diffusing opaque polyester support with a transparent polyester film laminated to its surface to provide a composite for a backlit display.
U.S. Pat. No. 5,795,425 discloses an ink jet imaging element wherein an ink jet image is deposited onto an adhesive receptor layer which is coated onto a protective layer and a temporary carrier layer. After imaging, the temporary carrier layer is peeled away. However, there is a problem with this element, however, in that it requires a temporary carrier layer and the adhesive receptor layer is not porous so that it has a longer dry time.
U.S. Pat. No. 4,785,313 discloses a recording element comprising a support having thereon an ink transporting layer and an ink retaining layer. The ink transporting layer may contain non-dyeable particles in a binder which is required to be non-dyeable. However, there is a problem with this element in that the dye image has to go through an ink transporting layer until it reaches the ink retaining layer, thus causing the image to spread which reduces image quality.
It is an object of this invention to provide a process of making an ink jet image display using an ink jet recording element which can be laminated to another support for image display applications and which has superior adhesion. It is another object of this invention to provide a process of making an ink jet image display using an ink jet recording element which when printed with an ink jet image will have a fast dry time.
SUMMARY OF THE INVENTION
This and other objects are provided by the present invention comprising a process for making an ink jet image display comprising:
A) providing an ink jet recording element comprising a substantially transparent support having thereon, in the order recited, a base layer comprising a hydrophilic or porous material and a porous, ink-receptive top layer capable of accepting an ink jet image comprising a polymeric adhesive binder and thermally-activated adhesive polymeric particles, the particle-to-binder ratio being between about 95:5 and 70:30, and wherein both the binder and the polymer used to make the polymeric particles have:
a) a tensile strength at break of greater than about 1 MPa;
b) an elongation at break of greater than about 10%;
c) a tensile modulus of greater than about 1 MPa; and
d) a Tg of less than about 50° C.;
and the polymeric particles also having a particle size of less than about 10 &mgr;m and a Tm or softening point of greater than about 50° C.;
B) printing an ink jet image on the recording element;
C) bringing the top layer of the recording element in contact with another substrate to form a composite assemblage; and
D) subjecting the composite assemblage to heat and pressure to adhere the recording element to the substrate to form the ink jet image display.
DETAILED DESCRIPTION OF THE INVENTION
In a preferred embodiment of the invention, both the polymeric binder and the polymer used to make the adhesive polymeric particles used in the recording element for the process of the invention have:
a) a tensile strength at break of between about 1 MPa and about 70 MPa, preferably between about 2 MPa and about 50 MPa;
b) an elongation at break between about 10% and about 2,000%, preferably between about 100% and about 1,000%;
c) a tensile modulus of between about 1 MPa and about 500 MPa, preferably between about 2 MPa and about 400 MPa; and
d) a Tg of less than about 50° C., preferably from about −60° C. to about 20° C.
In order for the ink-receptive top layer to be sufficiently porous, the particle-to-binder ratio should preferably be between about 95:5 and 70:30, preferably between about 90:10 and 80:20. If the particle-to-binder ratio is above the range stated, the layer will not have any cohesive strength. If the particle-to-binder ratio is below the range stated, the layer will not be porous enough to provide a fast dry time.
The polymer used to make the thermally-activated adhesive, polymeric particles used in the invention may be a partially crystalline or an amorphous polymer, for example, a polycaprolactone such as Tone® (Union Carbide Corp.), an ethylene-vinyl acetate copolymer such as Elvax® (DuPont Corp.), a styrene-ethylene/butylene-styrene block copolymer such as Kraton® (Shell Chemical Corp.), a polyamide such as Griltex CoPolyamide® (EMS American Grilon Corp.), or a polyester such as Griltex CoPolyester® (EMS American Grilon Corp.). Other suitable materials can be found in the
Handbook of Common Polymers
CRC Press 1971, and
Properties of Polymers Elsevier
1990. In a preferred embodiment, the polymer used to make the polymeric particles comprises a polycaprolactone.
The thermally-activated adhesive, polymeric particles used in the invention may be made using various techniques, such as, for example, evaporative limited coalescence as described in U.S. Pat. No. 4,833,060. Other techniques may also be used such as limited coalescence as described in U.S. Pat. No. 5,354,799, or cryogenic grinding as described in U.S. Pat. No. 4,273,294.
As noted above, the polymer used to make the thermally-activated adhesive polymeric particles has a melting temperature, TM, of greater than about 50° C., or a softening point of greater than about 50° C. The Tm is measured using a differential scanning calorimeter (DSC). In a preferred embodiment, the Tm is between about 60° C. and 120° C. A softening point of a polymer can be measured by the Ring and Ball method as described in ASTM E28.
The polymeric adhesive binder useful in the top layer of the recording element used in the invention may be, for example, a polyurethane such as a Witcobond® Aqueous Urethane Dispersion (Witco Corp.), a vinyl acetate-ethylene copolymer emulsion, an ethylene-vinyl chloride copolymer emulsion, a vinyl acetate-vinyl chloride-ethylene terpolymer emulsion such as Airflex® (Air Products Corp.), an acrylic emulsion such as Flexbond® (Air Products Corp), or polyvinyl alcohol such as Airvol® (Air Products Corp). In a preferred embodiment, the adhesive binder comprises a polyurethane.
The base layer, in general, has a thickness of about 1 &mgr;m to about 20 &mgr;m and the top layer will usually have a thickness of about 2 &mgr;m to about 50 &mgr;m.
The base layer is primarily intended to act as a sponge layer for the absorption of ink solvent. As such, it is primarily composed of hydrophilic or porous materials. Generally, the base layer is present in an amount from about 5 g/m
2
to about 7 g/m
2
, preferably from about 5.3 g/m
2
to about 5.5 g/m
2
. Suitable hydrophilic materi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for making an ink jet image display does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for making an ink jet image display, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for making an ink jet image display will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2907826

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.