Counter rotating circular wing for aircraft

Aeronautics and astronautics – Aircraft sustentation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C244S006000, C244S00700B, C244S012200, C244S02300R, C244S017230

Reexamination Certificate

active

06450446

ABSTRACT:

BACKGROUND OF THE INVENTION
The first recorded vertical take-off and landing device is attributed to the Chinese alchemist Ko Hung. In the fourth Century AD, Ko Hung had developed a rotary lift spinning-top toy that was an early ancestor of the helicopter. In 1490, Leonardo Da Vinci drew the Helical Air Screw, a spiral shaped flying machine that was also a step along the path to the modern vertical take-off and landing (VTOL) vehicle.
Throughout the intervening centuries, further development of VTOL vehicles occurred with very little success because of the lack of a light weight powerful engine to drive the rotating blades of a VTOL. On Nov. 13, 1907, French inventor Paul Cornu's aircraft was the first to take off vertically with its pilot and make a free, albeit very short, flight. Like the Wright brother's first flight at Kittyhawk, this showed that VTOL vehicles were within reach. However, it was not until the mid-1940's when gyrotechnical and control mechanisms reached a sufficiently advanced stage of development to enable steady and smooth flights of any great distance.
During the 1950's the helicopter became more common. The first extensive use of the helicopter came when it was adopted by the US military during the Korean War. The unique capabilities of the helicopter being able to take off and land vertically and without requiring runways made it an excellent transport vehicle ferrying the critically wounded from the front-line to the mobile army surgical hospitals behind the line.
While there are different types of VTOL vehicles other than the helicopter , the helicopter serves as an excellent example to explain the principles involved with vertical take off and landing flight. A helicopter has at least two wings, also called blades, attached to a main rotor. The main rotor is attached to a drive shaft that is connected to an engine of some sort. The engine powers the drive shaft and in turn spins the rotor blades. This spinning of the rotor blades creates lift by deflecting air downward and benefiting from the equal and opposite reaction that results. The rotary motion pushing the air much like a ceiling fan. Whereas a standard airplane requires horizontal motion to generate lift by air passing over its wings, the rotating helicopter blades account of the horizontal motion of the airplane. To prevent the helicopter from rotating with the spinning main rotor, the helicopter has a set of rotor blades affixed to the helicopter's tail. These act as an anti-torque mechanism stabilizing the aircraft and also enable further directional control. This tail rotor is directed in a horizontal plane and compensates for the spin of the helicopter. Horizontal motion is then achieved by varying the angle of attack of the rotor blades. This unique combination of vertical lift and horizontal control enables a helicopter to hover, move forwards, backwards and to its left and right depending on the command of the pilot.
A VTOL vehicle variation in the same family as the helicopter is the helicopter with two counter rotating main rotors on a common axis. The counter-rotating blades enable the VTOL to achieve higher speeds allow for greater control, agility and powerful maneuvering. They also counteract the spin that can occur in a traditional one rotor system without requiring a tail rotor to stabilize the aircraft. There is an additional advantage of eliminating noise caused by the tail rotor and its transmission. The two producers of this variety of helicopter have been Kamov and Sikorsky.
Further variations include such VTOL's as the Boeing Chinook and the Filper Beta. Both aircraft have two rotors for vertical takeoff and landing and no tail rotor. The Chinook is a huge troop transport that uses a separate turbine to power each rotor. The Filper Beta is a individual transport vehicle, best equated with a car, however they operate on similar principals. The two separate rotors are designed compensate for spin while varying the attack and the acceleration of the rotors enables the pilot to maneuver and fly the aircraft.
Another kind of vertical takeoff and landing vehicle is a hybrid of an airplane and a helicopter. The first successful attempt at this design was the Chance-Vought XC-
142
tilt wing aircraft. This offered the vertical takeoff and landing ability of the helicopter while enabling the greater speed of fixed wing aircraft. The wing unit of the propeller driven aircraft tilted from standard airplane horizontal to the vertical for take off and landing. The V-22 Osprey is similar to the Chance-Vought however only the rotors tilt. The tilt-rotor Osprey also allows vertical take off and landing as well as high speed horizontal flight.
The prior technology of round wing aircraft includes both VTOL aircraft and aircraft with round wings that are used primarily for horizontal flight instead of VTOL. Rasmussen's round winged aircraft invention used two round wings, one on each side of the fuselage, to enhance horizontal propulsion. In the event of a power loss, blades could be extend from the two round wings that were to continue the wings' rotation and allow the aircraft to land safely. This prior art used the round wings to enable safe landings in the event of power loss.
Geddes developed an aircraft that has a pair of rotary wings for the generation of electrical power during flight. The wings were located on opposite sides of the fuselage and had raised vanes for catching wind resistance to cause the wings to spin during flight. The vanes for each wing were set opposite the other's configuration so that the wings would rotate in the opposite directions. This prior art used the rotation of the round wings to generate electrical power for the aircraft.
Gouin developed an aircraft that had two rotating discs for wings designed to facilitate vertical take off and landing of the aircraft. The two wings were located one on each side of the aircraft. The wings had vanes and were powered by synchronized turbine engines to rotate in opposite directions. While this aircraft uses round wings for the purpose of vertical take off and landing, it nonetheless, requires two wings located with one wing on each side of the aircraft. The aircraft uses other propulsion means for horizontal flight.
A more recent interpretation of the round winged VTOL aircraft is proposed by Vass. Vass uses a fixed round wing containing an impeller that forces air downward giving the aircraft its ability to take off and land vertically. For horizontal flight, the aircraft uses other propulsion means. A different embodiment shows the round wing impeller method for both take off and landing as a horizontal flight propulsion means by locating one round wing impeller unit on each side of the aircraft.
BRIEF SUMMARY OF THE INVENTION
The present invention herein is a disc shaped wing for a vertical take off and landing air vehicle with two wing segments, an inner disc and an outer disc each mounted on a coaxial rotor. The disc segments counter-rotate to enable vertical takeoff and landing and greater stability during horizontal flight. Horizontal flight is effected by a propulsion system. This propulsion system can be propeller, turbine propeller or jet air flow. It can also include a propulsion system heretofore unknown.
This invention combines the vertical take off and landing features of a helicopter with the benefits of a fixed wing aircraft. The structure of the invention enables the aircraft utilizing the wing to fly at higher speeds horizontally, while enabling the vertical take of and landing of helicopters. Once the aircraft has achieved flight, the invention allows the aircraft to fly like a glider. The aerodynamic structure of the rotating wing offers greater fuel resources and economically efficient. This essentially combines the best features of airplanes and helicopters.
The wing is made up of an inner disc and an outer disc. In one embodiment of the invention, the inner disc is comprised of two ring segments webbed by flap blades. The upper flap blades are atta

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Counter rotating circular wing for aircraft does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Counter rotating circular wing for aircraft, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Counter rotating circular wing for aircraft will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2906115

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.