Power management for an implantable medical device

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06453198

ABSTRACT:

BACKGROUND OF THE INVENTION
This patent application is related to the following patent applications filed herewith:
(1) U.S. patent application Ser. No. 09/561,566, entitled “Implantable Medical Pump with Multi-layer Back-up Memory,” filed on Apr. 28, 2000, and having named inventors David C. Ullestad and Irfan Z. Ali;
(2) U.S. patent application Ser. No. 09/562,221, entitled “Battery Recharge Management for an Implantable Medical Device,” filed on Apr. 28, 2000, and having named inventors Nathan A. Torgerson and James E. Riekels; and
(3) U.S. patent application Ser. No. 09/561,479, entitled “Method and Apparatus for Programming an Implantable Medical Device,” filed on Nov. 1, 2001.
FIELD OF INVENTION
This invention relates generally to implantable medical devices, and more particularly to power management techniques for implantable medical devices.
DESCRIPTION OF THE RELATED ART
The medical device industry produces a wide variety of electronic and mechanical devices for treating patient medical conditions. Depending upon the medical condition, medical devices can be surgically implanted or connected externally to the patient receiving treatment. Physicians use medical devices alone or in combination with drug therapies to treat patient medical conditions. For some medical conditions, medical devices provide the best, and sometimes the only, therapy to restore an individual to a more healthful condition and a fuller life.
Implantable medical devices are commonly used today to treat patients suffering from various ailments. Implantable medical devices can be used to treat any number of conditions such as pain, incontinence, movement disorders such as epilepsy and Parkinson's disease, and sleep apnea. Additional therapies appear promising to treat a variety of physiological, psychological, and emotional conditions. As the number of implantable medical device therapies has expanded, greater demands have been placed on the implantable medical device.
One type of implantable medical device is an Implantable Neuro Stimulator (INS). The INS delivers mild electrical impulses to neural tissue using an electrical lead. The neurostimulation targets desired neural tissue to treat the ailment of concern. For example, in the case of pain, electrical impulses (which are felt as tingling) may be directed to cover the specific sites where the patient is feeling pain. Neurostimulation can give patients effective pain relief and can reduce or eliminate the need for repeat surgeries and the need for pain medications.
Implantable medical devices such as neurostimulation systems may be partially implantable where a power source is worn outside the patient's body. This system requires an antenna to be placed on the patient's skin over the site of the receiver to provide energy and control to the implanted device. Typically, the medical device is totally implantable where the power source is part of the implanted device. The physician and patient may control the implanted system using an external programmer. Such totally implantable systems include, for example, the Itre® 3 brand neurostimulator sold by Medtronic, Inc. of Minneapolis, Minn.
In the case of an INS, for example, the system generally includes an implantable neurostimulator (INS) (also known as an implantable pulse generator (IPG)), external programmer(s), and electrical lead(s). The INS is typically implanted near the abdomen of the patient. The lead is a small medical wire with special insulation. It is implanted next to the spinal cord through a needle and contains a set of electrodes (small electrical contacts) through which electrical stimulation is delivered to the spinal cord. The lead is coupled to the INS via an implanted extension cable. The INS can be powered by an internal source such as a battery or by an external source such as a radio frequency transmitter. The INS contains electronics to send precise, electrical pulses to the spinal cord, brain, or neural tissue to provide the desired treatment therapy. The external programmer is a hand-held device that allows the physician or patient to optimize the stimulation therapy delivered by the INS. The external programmer communicates with the INS using radio waves.
Totally implantable medical devices, however, rely entirely on the implanted power source. Various INS components rely on the power source for energy, including for example, the signal generator for providing treatment therapy to the patient, the real time clock, the telemetry unit, and the memory. The signal generator is generally the primary energy drain for the power source. For those devices that have nonrechargeable batteries, the batteries last longer, however, the device must be surgically replaced when the power source is fully depleted. For those devices having rechargeable batteries, a surgical procedure is not required, however, the power source must be recharged more frequently since it cannot store as much energy.
In known systems, however, the continued operation of the signal generator during times of low energy unnecessarily drains the power source, thereby potentially depleting energy to device-critical INS components, such as the real time clock, the telemetry unit, and the memory. In the event that the power source runs low on energy, the implanted device can lose its treatment efficacy as well as its memory, its time, and its communications link with the external component. Further, when the power source is subsequently recharged, the INS may have to be reprogrammed and recalibrated according to the previous settings that were lost when the power source was fully depleted. The need for energy to handle the various functions of the implanted device is only going to increase.
Another disadvantage with known systems is that the power source can be damaged when it is being depleted at a high rate during periods when it has low voltage. This can occur, for example, when the implantable device is operating to provide treatment therapy with INS components having high-power requirements. For example, a 4.0 V battery that is below 2.75 V in stored energy is at risk of being damaged when it is being drained of 4 milliamps of current by the implanted device. Over time, with repeated draining of the battery at these critical setpoints would substantially reduce the efficacy of the battery and ultimately require surgical replacement of the implanted device.
Known implantable medical devices, for example, attempt to address the foregoing problems by providing low power or end-of-life warnings to the patient. For example, U.S. Pat. No. 5,344,431 discloses a method and apparatus for determination of battery end-of-service for implantable medical devices. This reference is incorporated herein by reference in its entirety. Such systems, however, continue to drain the battery until it is fully depleted without regard to preserving operation of the device-critical components.
Accordingly, there remains a need in that art to provide a power management system and technique for an implantable medical device that maintains operation of device-critical components during periods of low energy. Further, there remains a need in that art to provide a power management system and technique that allocates power source energy during periods of low energy.
SUMMARY OF THE INVENTION
The present invention provides a technique to manage and allocate the energy provided to various components of an implanted device during periods of low energy. In accordance with a preferred embodiment of the present invention, the power management system includes an implantable power source delivering energy to various components within the implantable medical device, a measurement device to measure the energy of the power source, and a processor responsive to the measurement device. The processor monitors the energy level of the power source. If the energy level falls below a first level, the processor shuts off energy to the therapy module of the implantable medical device while continuing to provide energy to the other device-critical

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Power management for an implantable medical device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Power management for an implantable medical device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Power management for an implantable medical device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2905390

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.