Low hue photobleaches

Cleaning compositions for solid surfaces – auxiliary compositions – Cleaning compositions or processes of preparing – For cleaning a specific substrate or removing a specific...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06417150

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to novel organotin, organogermanium, organoplatinum, organopalladium, organolead, or organophosphorous photosensitizing compounds having a Q-band maximum absorption wavelength of 660 nanometers or greater and their use as photoactivators (photosensitizer) or singlet oxygen producers, in particular for low hue photobleaching for removing stains from textiles and hard surfaces. The present invention also relates to laundry compositions and hard surface cleaners comprising the novel organotin, organogermanium, organoplatinum, organopalladium, organolead, or organophosphorous photosensitizing compounds of the present invention. The present invention further relates to a method of delivering compositions comprising low hue photobleaches to soiled and stained fabrics and to hard surfaces.
BACKGROUND OF THE INVENTION
It is known that certain water-soluble phthalocyanine, naphthalocyanine, and metallocyanine compounds can be used as photobleaching and anti-microbial agents. Phthalocyanines and naphthalocyanines or their metal complexes can form “singlet oxygen” an oxidative species capable of reacting with stains to bleach them to a colorless and usually water-soluble state.
There are many examples of phthalocyanines and naphthalocyanines photobleaches, the most common being the zinc and aluminum phthalocyanines. In the literature the term “photosensitizer” is often used instead of “photoactivator” and may therefore be considered as standing equally well for the latter term used throughout this specification
The prior art teaches phthalocyanine and naphthalocyanine compounds having the general structure
where Me is a transition or non-transition metal, (Sens.) is a phthalocyanine or naphthalocyanine ring which, when combined with a suitable Me unit, is capable of undergoing photosensitization of oxygen molecules, R units are substituent groups which are bonded to the photosensitization ring units (Sens.) to enhance the solubility or photochemical properties of the molecule, and Y units are substituents associated with the metal atom, for example, anions to provide electronic neutrality. The selection of a particular substituent R unit for substitution into the molecule has been the focus of many years of research and these units are typically chosen by the formulator to impart into the target molecule the desired level of water solubility.
A major limitation to the use of phthalocyanine and naphthalocyanine compounds for fabric photobleaching is the fact that these molecules are highly colored materials.
A second limitation is that the compounds are not inherently water soluble. It has therefore been the task of phthalocyanine and naphthalocyanine photobleach formulators to provide water soluble photobleaches without adversely affecting their photochemical properties.
A further task for the formulators of photobleaches has been the need to modify the properties of the photosensitizer (Sens.) unit of the molecule, in other words, to increase the quantum efficiency without reducing the water solubility. While balancing water solubility and enhanced photophysics. the formulator must insure that the structural modifications do not increase the color.
It is well known to formulators skilled in the art that an R unit which may produce a desired increase in one of these three properties may cause an equally large decrease in one or both of the other desirable properties.
Surprisingly, it has been found that the compounds of the present invention allow the formulators to modify the levels of solubility, photoefficiency, Q-band wavelength maxima separately without adversely affecting the other parameters of the molecule. This ability to delineate and selectively modify the key structural elements contributing to the target properties of the molecule allows the formulator to proceed without having to rely upon a “hit and miss” stratagem.
The photobleaches of the invention comprise two “elements”. The photosensitizing ring which is optimized for color (hue) and generation of singlet oxygen, and axial groups which are optimized to provide the desired level of solubility, substantivity, and de-aggregation. These two elements will be described in more detail herein below.
One key to this ability to control the molecular properties is found when contrasting the structure of known photobleaches comprising phthalocyanines and naphthalocyanines with those of the present invention. The examples of photo-bleaches previously described in the art are generally flat molecules due to their planar ring structure. This planarity produces an propensity for these molecules to aggretate wherein this aggregation tends to lead to photochemical quenching, preventing efficient formation of singlet oxygen.
The organotin, organogermanium, organoplatinum, organopalladium, organolead, or organophosphorous photosensitizing compounds of the present invention comprise axial substituents that act to break up this ordering effect, hence providing an efficiently formed mono-layer of photosensitizers evenly applied to a given substrate. Because each molecule of this mono-layer can now contribute to bleaching there is better cost efficiency to the formulator.
It has been surprisingly found that because of the separating out of physical properties into “molecular sectors”, e.g. R groups for solubility, new uses for the compounds of the present invention have been realized. Adducts which provide unique solubility profiles, but which detract from the photophysics, were once excluded from use in photobleaches. However, the inclusion of these moieties into the photobleaches of the present invention results in the ability to formulate photobleaches for use in non-classical applications, for example dry cleaning applications. Solvent based or low aqueous solutions of the present invention are now obtainable for the very reason that the present invention provides control over solubility which is manifested in the choice of the axial R substitutions.
The proper selection of axial R units attached to the compounds of the present invention allow the formulator to balance the changes in photoefficiency of the desired compound with the water solubility of the parent material. In addition, these axial R unit modifications provide the formulator with the ability to balance solubility, Q-band &lgr;
max
, and quantum efficiency of the (Sens.) unit.
It is an object of the present invention to provide “substantive” and “non-substantive” organotin, organogermanium, organoplatinum, organopalladium, organolead, or organophosphorous photosensitizers. A “substantive” organotin, organogermanium, organoplatinum, organopalladium, organolead, or organophosphorous photosensitizer will be attracted to a surface and a “non-substantive” organotin, organogermanium, organoplatinum, organopalladium, organolead, or organophosphorous photosensitizer will repel a surface.
It is a further object of the present invention to provide substantive and non-substantive photobleaching laundry compositions for natural, synthetic or blended fabrics.
It is a further object of the present invention to provide photobleaching compositions that comprise non-aqueous and low aqueous carriers, that is, photobleaching compositions having carriers wherein water constitutes less than half of the carrier liquid.
It is a further object of the present invention to provide substantive and non-substantive photobleaching hard surface cleaning compositions for non-porous hard surfaces, inter alia, Formica®, ceramic tile, glass, or for porous hard surfaces such as concrete or wood.
An object of the present invention is to provide a method for bleaching fabric with laundry compositions comprising organotin, organogermanium, organoplatinum, organopalladium, organolead, or organophosphorous photobleaching compounds of the present invention.
An object of the present invention is to provide a method for cleaning hard surfaces with compositions comprising organotin, organogermanium, organoplatinum, organopalladium, organolead, or organophosphorous

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Low hue photobleaches does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Low hue photobleaches, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low hue photobleaches will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2903693

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.