Snowboard binding system with automatic forward lean support

Land vehicles – Runner vehicle – Standing occupant

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C280S011360, C280S617000

Reexamination Certificate

active

06382641

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to bindings for snowboards and, in particular, to a binding system with an automatic forward lean support.
BACKGROUND OF THE INVENTION
Snowboards have been in use for a number of years, and snowboarding has become a popular winter sports activity. The typical snowboard has an elongate flotation surface with an upwardly angled forward end and a tail end. A pair of bindings are rigidly attached between the edges of the snowboard, and are adapted to fasten the boots of a snowboarder to the snowboard. The edge of the snowboard closest to the toe end of the bindings is referred to as the toe edge, while the opposing edge is referred to as the heel edge. To maneuver a snowboard, it is desirable that snowboarders be able to bend their ankles, much in the same way surfers bend their ankles to maneuver a surfboard, thereby transferring their weight in the desired direction. A snowboarder may perform serpentine-like maneuvers by alternating his or her weight between the toe and heel edges of the snowboard. Thus, sufficient forward flexibility to permit an adjustable forward lean angle during use is desired. At the same time, it is desired that aft flexibility be limited so that the forward lean angle is maintained at no less than a minimum for proper heel edge control.
Step-in and strap bindings are the most common types of bindings currently available to couple a snowboarder's boot to the snowboard. A step-in binding includes a rigid plate that is attached to the snowboard and is adapted to receive toe and heel bails that are defined in the sole of the boot. Conventional, mountaineering-style boots used for snowboarding, like ski boots, include a molded plastic, stiff outer shell and a soft inner liner. Mountaineering-style boots are generally stiff enough to limit aft ankle flexibility and thereby provide the desired edge control and stability for maneuvering the snowboard. However, they are usually too stiff in the forward direction for some board maneuvers and for walking comfort when not bound to the snowboard. Mountaineering-type boots are also too stiff to allow significant lateral flexibility, a key movement in the sport and essential for freestyle enthusiasts. Furthermore, stiff mountaineering-type boots offer only marginal fore and aft flexibility, not only when the boot is attached to the binding, but also when the boot is removed from the binding and the snowboarder is walking. The stiff molded plastic outer shell does not permit sufficient fore and aft movement of the ankle for walking comfort and, therefore, is both an uncomfortable and difficult form of footwear for the snowboarder when the boot is not engaged with the binding of the snowboard. As a result, the mountaineering-type boots are generally too constraining for many snowboarders.
As noted above, freestyle snowboarding requires more lateral and forward flexibility of the ankle of the snowboarder than the mountaineering-type boots allow. Even all-around recreational snowboarding requires some boot flexibility. The stiff mountaineering-type boots offer little lateral flexibility and only marginal forward flexibility. Thus, because of the desire for flexibility, some snowboarders have opted for an insulated, flexible snowboot combined with a strap-on binding or a step-in binding, such as that disclosed in U.S. Pat. No. 5,505,477, issued to Turner et al. The flexible snowboot provides the flexibility desired by snowboarders for freestyle maneuvers, but may lack sufficient aft rigidity for proper edge control.
While flexibility is an aspect of snowboots that is desired by snowboarders for maneuvering the snowboard, too much aft flexibility is undesirable because the snowboot would lack the stiffness to properly transfer the snowboarder's weight between the toe and heel edges. The snowboarder's ability to initiate and properly execute a heel-edge turn requires that the snowboot have sufficient aft lean rigidity to maintain the forward lean angle at no less than a minimum. Aft lean limitation is important because it provides leverage on the snowboard during a heel-edge turn and it assists in angling the snowboard upwardly to further edge the heel edge into the snow during a heel-edge turn. Aft lean limitation of an otherwise flexible snowboot may be obtained by either inserting a highback plate between the liner and the outer shell of the boot, or mounting a highback on the exterior of the outer shell.
Prior attempts at increasing the forward lean stiffness of an otherwise relatively flexible snowboot have used a flexible snowboot having a pivoting highback. The snowboot is secured to the binding plate by a strap extending over the top of the forefoot portion of the snowboot. The strap extends from one side of the binding to the other. Although such a snowboot is comfortable to walk in when it is removed from the snowboard binding, it is not very convenient to attach the snowboot to the snowboard because of the strap binding. Such a system requires the snowboarder to manually adjust the strap around the snowboot before and after each run down a snow hill. Other attempts at increasing forward lean stiffness have used a stiff boot, such as the mountaineering-type boot described above, coupled to a snowboard by a step-in binding. Although such systems provide a simpler attachment of the boot to the snowboard, it fails to provide a boot that is comfortable to walk in when it is removed from the snowboard.
Thus, there exists a need for a snowboard boot binding that provides an automatic forward lean adjustment system while providing a highback that is allowed to flex rearwardly for walking comfort when the boot is removed from the binding. The present invention addresses these issues to overcome the limitations currently encountered by providing a forward lean device fastened to a step-in binding, thereby automatically limiting the minimum forward lean of the boot when the boot is engaged with the step-in binding.
SUMMARY OF THE INVENTION
The present invention is a step-in binding for securing a boot to a snowboard. The boot includes a toe end, a heel end, an ankle support portion capable of flexing relative to the plane of the sole, and an elongate, substantially U-shaped highback mounted to the exterior of the boot in the calf area thereof. The highback extends from the ankle area to the top of the boot. The step-in binding also includes an elongate rigid plate attached to the snowboard. The plate has a forward end and a rearward end. The step-in binding has at least a first binding member attached to the plate for receiving and coupling to a binding attachment surface defined by the sole region of the boot. A release member is attached to the first binding member for selectively releasing the boot from the first binding member. A forward lean support member is fastened substantially near the rearward end of the plate for engagement with the highback to define a minimum forward lean angle of the boot and to limit the aft flexure of the ankle support portion of the boot when the boot is received within the first binding member.
In the preferred embodiment, the lean support member is slidably adjustable between the forward and rearward ends of the plate, such that the lean support member may be adjusted therein to optimize the fit between the lean support member and the heel of the boot. Preferably, the lean support member is a U-shaped heel loop, the ends of which are fastened to first and second flanges that project upwardly from the plate.
In another aspect of the present invention, a Y-shaped stopper block depends downwardly from the highback and is positioned for engagement with the lean support member, such that the lean support member is receivable within a forked portion of the stopper block when the boot is coupled to the snowboard to define the minimum forward lean angle and to limit the aft flexure of the ankle support portion of the boot.
In an alternate embodiment, the step-in binding includes a Y-shaped stopper block fastened to the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Snowboard binding system with automatic forward lean support does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Snowboard binding system with automatic forward lean support, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Snowboard binding system with automatic forward lean support will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2897441

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.