Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...
Reexamination Certificate
1997-10-07
2002-06-25
Casler, Brian L. (Department: 3763)
Surgery
Means for introducing or removing material from body for...
Treating material introduced into or removed from body...
C623S001110
Reexamination Certificate
active
06409716
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to delivery of drugs to the walls of body lumens and other parts of the body.
BACKGROUND OF THE INVENTION
Systemic administration of drugs treats the organism as a whole, even though the disease may be localized, such as occlusion of a duct or vessel. Localization of a drug poses special problems in cases involving the walls of ducts and vessels, since, by nature, these organs serve as transport systems.
Atherosclerotic disease, for example, causes localized occlusion of the blood vessels resulting from the build-up of plaque. As the deposits increase in size, they reduce the diameter of the arteries and impede blood circulation. Angioplasty, which involves the insertion of catheters, such as balloon catheters, through the occluded region of the blood vessel in order to expand it, has been used to treat atherosclerosis.
The aftermath of angioplasty in many cases is problematic, due to restenosis, or closing of the vessel, that can occur from causes including mechanical abrasion and the proliferation of smooth muscle cells stimulated by the angioplasty treatment. Restenosis may also occur as a result of clot formation following angioplasty, due to injury to the vessel wall which triggers the natural clot-forming reactions of the blood.
In addition to the need for improved drug delivery in respect of angioplasty, and other treatments of ducts and vessels, their is need, more generally, for improved localized internal delivery of drugs in most branches of medicine for most types of drugs. In particular, there is need for improved delivery into tissue and into cells themselves within organs of the body via luminal and percutaneous access.
SUMMARY OF THE INVENTION
In one aspect, the invention features a catheter and method for delivering drug to tissue at a desired location in the body such as, the wall of a body lumen. The catheter is constructed for insertion in the body and has a catheter shaft and an expandable portion mounted on the catheter shaft. The expandable portion is expandable to a controlled pressure against the body tissue, e.g., or to fill the cross-section of the body lumen and press against the wall of the body lumen. At least a portion of the exterior surface of the expandable portion is defined by a coating of a tenaciously adhered swellable hydrogel polymer. Incorporated in the hydrogel polymer is an aqueous solution of a preselected drug to be delivered to the tissue. The hydrogel polymer and drug are selected to allow rapid release of a desired dosage of the drug from the hydrogel polymer coating during compression of the hydrogel polymer coating against the tissue or wall of the lumen when the expandable portion is expanded.
Various embodiments may include one or more of the following features. The catheter is adapted for insertion in a blood vessel, and the expandable portion is an inflatable dilatation balloon adapted for inflation at pressures in the range for effecting widening of a stenosed blood vessel. The pressure is in the range of about 1 to 20 atmospheres. The hydrogel polymer and drug are effective to release about 20% or more of the drug during inflation in the pressure range. The compression is effective to deliver the drug over a duration of about 10 minutes or less. The hydrogel polymer coating is about 10 to 50 microns thick in the swelled, uncompressed state. The hydrogel polymer is selected from the group consisting of polycarboxylic acids, cellulosic polymers, gelatin, polyvinylpyrrolidone, maleic anhydride polymers, polyamides, polyvinyl alcohols, and polyethylene oxides. The hydrogel polymer is polyacrylic acid. The drug is an anti-thrombogenic drug selected from the group consisting of heparin, PPACK, enoxaprin, aspirin and hirudin. The drug is an anti-proliferative drug selected from the group consisting of monoclonal antibodies, capable of blocking smooth muscle cell proliferation, heparin, angiopeptin and enoxaprin. The expandable portion is adapted for application of heat to the polymer material to control the rate of administration. The catheter further comprises a sheath member, extendable over the balloon to inhibit release of the drug into body fluids during placement of the catheter. The balloon catheter is a perfusion catheter having an expandable balloon. The expandable portion includes a stent, mountable in the blood vessel by expansion thereof. The drug is bound in the hydrogel polymer for slow time release of the drug after the compression of the hydrogel polymer by the expansion. The hydrogel polymer is a polyacrylic acid including an ammonium anion and the drug is heparin. The stent is expandable by a balloon. The stent and the balloon both include the swellable hydrogel coating incorporating the drug. The expandable portion of the catheter is prepared by introducing an aqueous solution of the drug to the hydrogel polymer coating, the catheter is introduced to the body or body lumen to position the expandable portion at the point of desired drug application, and the expandable portion is expanded to enable delivery of the drug by compression of the hydrogel polymer coating against the body tissue of the wall at the body lumen. The expandable portion is positioned at a point of occlusion in a blood vessel and the expandable portion is expanded at pressures sufficient to simultaneously dilate the vessel and deliver the drug by compression of the hydrogel polymer coating.
In a particular aspect, the invention includes a balloon catheter for delivering drug to tissue at a desired location of the wall of a blood vessel. The catheter is constructed for insertion in a blood vessel and has a catheter shaft and an expandable dilatation balloon mounted on the catheter shaft. The expandable balloon is expandable by an expansion controller to engage the tissue at a controlled pressure in the range of about 1 to 20 atmospheres to fill the cross-section of the blood vessel and press against the wall of the blood vessel. At least a portion of the exterior surface of the expandable balloon is defined by a coating of a tenaciously adhered swellable hydrogel polymer with a thickness in the range of about 10 to 50 microns in the swelled state, and incorporated within the hydrogel polymer coating is an aqueous solution of a preselected drug to be delivered to the tissue. The hydrogel polymer and drug are selected to allow rapid release of a desired dosage of about 20% or more of the drug solution from the hydrogel polymer coating during compression of the hydrogel polymer coating against body tissue or the wall of the vessel when the expandable portion is expanded in the pressure range.
In various embodiments of this aspect of the invention, the hydrogel polymer is also selected from the group consisting of polycarboxylic acids, cellulosic polymers, gelatin, polyvinylpyrrolidone, maleic anhydride polymers, polyamides, polyvinyl alcohols, and polyethylene oxides. The hydrogel polymer is polyacrylic acid. The drug is an anti-thrombogenic drug selected from the group consisting of heparin, PPACK, enoxaprin, aspirin and hirudin. The drug is an anti-proliferative drug selected from the group consisting of monoclonal antibodies capable of blocking smooth muscle cell proliferation, heparin, angiopeptin and enoxaprin. The catheter further comprises a sheath member, extendable over the balloon to inhibit release of the drug into body fluids during placement of the catheter.
In another aspect of the invention, the invention also features a catheter for delivering drug to tissue at a desired location of the body or wall of a body lumen. The catheter a catheter shaft and an expandable portion mounted on the catheter shaft, the expandable portion being expandable to a controlled pressure, e.g., to fill the cross-section of the body lumen and press against the wall of the body lumen. At least a portion of the exterior surface of the expandable portion is defined by a coating of a body-fluid soluble polymer, and incorporated within the soluble polymer, a preselected drug to be delivered to the tissue. The sol
Barry James J.
Sahatjian Ronald A.
Casler Brian L.
Kenyon & Kenyon
Scimed Life Systems Inc.
Thompson Michael M
LandOfFree
Drug delivery does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Drug delivery, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Drug delivery will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2896396