Process for sulfur reduction in naphtha streams

Mineral oils: processes and products – Refining – Sulfur removal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C208S209000, C208S20800M, C208S211000, C208S213000, C208S218000, C208S143000, C585S259000, C585S260000, C585S264000, C203SDIG006

Reexamination Certificate

active

06444118

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a process for concurrently fractionating and hydrotreating a full range naphtha stream. More particularly the full boiling range naphtha stream is subjected to simultaneous thioetherification and splitting into a light boiling range naphtha, a medium boiling range naphtha and a heavy boiling range naphtha. Each boiling range naphtha is treated separately to achieve a combined desired-total sulfur content.
2. Related Information
Petroleum distillate streams contain a variety of organic chemical components. Generally the streams are defined by their boiling ranges which determine the compositions. The processing of the streams also affects the composition. For instance, products from either catalytic cracking or thermal cracking processes contain high concentrations of olefinic materials as well as saturated (alkanes) materials and polyunsaturated materials (diolefins). Additionally, these components may be any of the various isomers of the compounds.
The composition of untreated naphtha as it comes from the crude still, or straight run naphtha, is primarily influenced by the crude source. Naphthas from paraffinic crude sources have more saturated straight chain or cyclic compounds. As a general rule most of the “sweet” (low sulfur) crudes and naphthas are paraffinic. The naphthenic crudes contain more unsaturates and cyclic and polycylic compounds. The higher sulfur content crudes tend to be naphthenic. Treatment of the different straight run naphthas may be slightly different depending upon their composition due to crude source.
Reformed naphtha or reformate generally requires no further treatment except perhaps distillation or solvent extraction for valuable aromatic product removal. Reformed naphthas have essentially no sulfur contaminants due to the severity of their pretreatment for the process and the process itself.
Cracked naphtha as it comes from the catalytic cracker has a relatively high octane number as a result of the olefinic and aromatic compounds contained therein. In some cases this fraction may contribute as much as half of the gasoline in the refinery pool together with a significant portion of the octane.
Catalytically cracked naphtha gasoline boiling range material currently forms a significant part (≈1/3) of the gasoline product pool in the United States and it provides the largest portion of the sulfur. The sulfur impurities may require removal, usually by hydrotreating, in order to comply with product specifications or to ensure compliance with environmental regulations.
The most common method of removal of the sulfur compounds is by hydrodesulfurization (HDS) in which the petroleum distillate is passed over a solid particulate catalyst comprising a hydrogenation metal supported on an alumina base. Additionally copious quantities of hydrogen are included-in the feed. The following equations illustrate the reactions in a typical HDS unit:
RSH+H
2
→RH+H
2
S  (1)
RCl+H
2
→RH+HCl  (2)
RN+2H
2
→RH+NH
3
  (3)
ROOH+2H
2
→RH+H
2
O  (4)
Typical operating conditions for the HDS reactions are:
Temperature, ° F.
600-780 
Pressure, psig
600-3000
H
2
recycle rate, SCF/bbl
1500-3000 
Fresh H
2
makeup, SCF/bbl
700-1000
The reaction of organic sulfur compounds in a refinery stream with hydrogen over a catalyst to form H
2
S is typically called hydrodesulfurization. Hydrotreating is a broader term which includes saturation of olefins and aromatics and the reaction of organic nitrogen compounds to form ammonia. However hydrodesulfurization is included and is sometimes simply referred to as hydrotreating. After the hydrotreating is complete, the product may be fractionated or simply flashed to release the hydrogen sulfide and collect the now desulfurized naphtha.
In addition to supplying high octane blending components the cracked naphthas are often used as sources of olefins in other processes such as etherifications. The conditions of hydrotreating of the naphtha fraction to remove sulfur will also saturate some of the olefinic compounds in the fraction reducing the octane and causing a loss of source olefins.
Various proposals have been made for removing sulfur while retaining the more desirable olefins. Since the olefins in the cracked naphtha are mainly in the low boiling fraction of these naphthas and the sulfur containing impurities tend to be concentrated in the high boiling fraction the most common solution has been prefractionation prior to hydrotreating. The prefractionation produces a light boiling range naphtha which boils in the range of C
5
to about 250° F. and a heavy boiling range naphtha which boils in the range of from about 250-475° F.
The predominant light or lower boiling sulfur compounds are mercaptans while the heavier or higher boiling compounds are thiophenes and other heterocyclic compounds. The separation by fractionation alone will not remove the mercaptans. However, in the past the mercaptans were frequently removed by oxidative processes involving caustic washing. A combination oxidative removal of the mercaptans followed by fractionation and hydrotreating of the heavier fraction is disclosed in U.S. Pat. No. 5,320,742. In the oxidative removal of the mercaptans the mercaptans are converted to the corresponding disulfides.
In addition to treating the lighter portion of the naphtha to remove the mercaptans the lighter fraction traditionally has been used as feed to a catalytic reforming unit to increase the octane number if necessary. Also the lighter fraction may be subjected to further separation to remove the valuable C
5
olefins (amylenes) which are useful in preparing ethers.
More recently a new technology has allowed for the simultaneous treatment and fractionation of petroleum products, including naphtha, especially fluid catalytically cracked naphtha (FCC naphtha). See, for example, commonly owned U.S. Pat. Nos. 5,510,568; 5,597,476; 5,779,883; 5,807,477 and 6,083,378.
Full boiling range FCC naphtha has been hydrotreated in a splitter which contains a thioetherification catalyst in the upper portion. Mercaptans in the light fraction react with the diolefins contained therein (thioetherification) to produce higher boiling sulfides which are removed as bottoms along with the heavy (higher boiling) FCC naphtha. Similarly, the light fraction has been treated to saturate dienes. The bottoms are usually subjected to further hydrodesulfurization.
It has now been found that the light FCC naphtha cut in the splitter just below the light fraction also contains mercaptans and a significant amount of thiophenes. The mercaptans in this cut may be removed by the thioetherification. The total sulfur content of the thiophene cut is relatively low and more significantly does not require as severe treatment as the sulfur compounds in the heavy fraction to convert the thiophene to H
2
S, thus the olefins in the thiophene cut are less likely to be hydrogenated.
It is an advantage of the present invention that the sulfur may be removed from the light olefin portion of the stream to a heavier portion of the stream without any substantial loss of olefins. Substantially all of the sulfur in the heavier portion is converted to H
2
S by hydrodesulfurization and easily distilled away from the hydrocarbons. Also, the sulfur in the middle cut will also be lowered.
SUMMARY OF THE INVENTION
Briefly the present invention is process for removal of sulfur from a full boiling range fluid cracked naphtha stream to meet higher standards for sulfur removal, by splitting the light portion of the stream and treating the components of the naphtha feed with the process that preserves the olefinic while most expediently removing the sulfur compounds.
In one embodiment the present invention utilizes a three-way naphtha splitter as a first distillation column reactor to treat the lightest boiling range naphtha to remove the mercaptans contained therein by reaction with diolefi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for sulfur reduction in naphtha streams does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for sulfur reduction in naphtha streams, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for sulfur reduction in naphtha streams will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2895059

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.