Method for manufacturing discharge nozzle of liquid jet...

Electric heating – Metal heating – By arc

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06426481

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method for manufacturing a discharge nozzle by which the discharge nozzle in a liquid jet recording head is manufactured by use of sublimation caused by an ultraviolet laser by splashing liquid drops of printing liquid or the like to deposit the liquid drops on a printing medium. The present invention also relates to a method for manufacturing the liquid jet recording head.
2. Related Background Art
For an ink jet printer which splashes drops of ink or the like to deposit them on a printing medium, printing quality largely depends on the characteristics of a nozzle, which ejects recording liquid. Most of these characteristics are determined by nozzle diameter variations and nozzle shape. Methods for forming a nozzle which has thus far been proposed are roughly classified into two types. Methods of one type include electroforming, which uses a metal plate, or electro-discharge, while those of the other type include a method for manufacturing (abrading) an organic macromolecular resin material using sublimation caused by a high-energy laser, such as an ultraviolet laser represented by an excimer laser. An ultraviolet laser method is generally used for fine nozzle manufacturing.
At the time of manufacturing an organic macromolecular material at a laser energy density suited to sublime the material using an ultraviolet laser method, the manufactured area becomes progressively smaller from the side of laser beam incoming to the side of laser beam outgoing, that is, a so-called tapered feature results. Because a nozzle shape required to increase the quality of printing by a liquid jet recording head is tapered to become progressively thinner toward the side of recording liquid ejection, the nozzle is manufactured by emitting a laser beam from the side of recording liquid feed, that is, after the discharge nozzle is manufactured, a plate in which the discharge nozzle is manufactured is jointed to a member which feeds recording liquid.
However, a discharge nozzle is required to be about a few micrometers to about one hundred micrometers long to ensure high printing quality. Moreover, a plate in which discharge nozzles are formed, of course, has the same thickness. A discharge nozzle forming plate is so thin and deformable that the plate must be worked using a laser from the side of liquid feed, and the plate must be jointed to a member which feeds recording liquid. Thus, the discharge nozzle forming plate deforms under stress after it is jointed to the member, so that a plurality of discharge nozzles aligned in the same direction are not formed, resulting in different directions of recording liquid ejection, which in turn deteriorate printing quality.
To solve these problems, methods have been proposed for manufacturing discharge nozzles after assembling a liquid jet recording head.
One of these methods, which is proposed in National Publication of International Patent Application No. 6-510958 (describing an invention by Compaq Computer Corporation), makes light beams, limited using mask patterns, obliquely incident on a discharge nozzle forming plate in two directions. By doing so, the discharge nozzle forming plate is worked in the direction of light beam travel, thus manufacturing discharge nozzles which are tapered so that the tapered form of the manufactured width is wider at inside than outside.
Another method, which is proposed in Japanese Patent Publication No. 6-24874 (Zahl Limited), emits a light beam, with a mask plate on which nozzle patterns are formed in close contact with a discharge nozzle forming plate in such a manner that a light beam is obliquely incident at the mask plate brought into close contact and the discharge nozzle forming plate, and swings or turns the mask plate and the discharge nozzle forming plate on a pivot, so that manufacturing progresses in the direction of light beam incidence, thus manufacturing on the liquid ejection side of the discharge nozzle forming plate discharge nozzles which are tapered so that they are progressively thinner toward their ends.
Because light beam manufacturing is performed in only two directions, the method, described in National Publication of International Patent Application No. 6-510958, forms on the liquid ejection side of a discharge nozzle forming plate in the oblique directions of light beam incidence discharge nozzles which are tapered so that they are progressively thinner toward their ends. In contrast, at right angles to the oblique directions, the method forms on the liquid ejection side discharge nozzles which are tapered so that they fan out toward their ends. Discharge nozzles which are tapered so that they fan out toward their ends are formed on the side of liquid ejection instead of cone-shaped discharge nozzles symmetric about the direction of liquid ejection, thus resisting ejected recording liquid and prolonging a liquid ejection period, so that high-speed printing becomes impossible. What is worse, nozzles fanned out manufacture mist during liquid ejection.
Because as this case does not relate to any projection imaging system, discharge nozzles must be formed one at a time. Thus it takes a long time to manufacture many discharge nozzles. This, in turn, means that the method is disadvantageous in terms of productivity. Because nozzle size sharply varies with the magnitude of light beam energy, it is difficult to keep the tolerance stable.
Because the method described in Japanese Patent Publication No. 6-24874 inclines a mask plate and a discharge nozzle forming plate to a light beam over time, it may be difficult to form tapered discharge nozzles which are symmetric about the direction of liquid ejection, depending on the states at the beginning and end of manufacturing, that is, on the process of manufacturing. As a result, it is difficult to eject recording liquid stably in the same direction from individual liquid jet recording heads.
Although all mask patterns (many arrayed discharge nozzles) can be formed at one time, manufacturing time is limited by inclination time because the method inclines a mask plate and a discharge nozzle forming plate. Thus manufacturing time increases, leading the method to be disadvantageous in terms of productivity.
To solve these problems, the applicant proposed in Japanese Patent Application No. 10-182407 a method which emits a plurality of parallel high-energy ultraviolet beams at the same time in directions at a predetermined angle to a perpendicular to a mask plate and symmetric about an axis, with the mask plate, patterned with the shape of liquid jet recording head discharge nozzles, in close contact with the external surface of a discharge nozzle forming plate, to form in the discharge nozzle forming plate a one-dimensional array of liquid jet recording head discharge nozzles or a plurality of rows of a plurality of arrays of liquid jet recording head discharge nozzles.
A discharge nozzle formed by the method is symmetric about the direction of liquid ejection. The method allows discharge nozzles which are tapered so that they are progressively thinner in part or in whole toward their ends to be formed on the liquid ejection side of the discharge nozzle forming plate. The method also allows many arrayed discharge nozzles to be formed at a time in a short time.
However, to provide a mask plate which is not worked or damaged, that is, exhibits high durability when an ultraviolet beam is emitted with the mask plate in close contact with a discharge nozzle forming plate, it is desired that the level of technology be further enhanced. When a mask plate is brought into close contact with a discharge nozzle forming plate, patterns on the mask plate must be positioned in predetermined locations on the discharge nozzle forming plate. To position patterns in predetermined locations more easily and efficiently, it is also desired that the level of technology be further enhanced.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide on the one hand a method for

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for manufacturing discharge nozzle of liquid jet... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for manufacturing discharge nozzle of liquid jet..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for manufacturing discharge nozzle of liquid jet... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2893990

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.