Lighting system for mass-transit vehicles

Illumination – Supported by vehicle structure – Bus or railway rolling stock

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C362S223000, C362S479000

Reexamination Certificate

active

06402353

ABSTRACT:

TECHNICAL FIELD
This invention relates to mass transit vehicle lighting systems; more particularly, it relates to a lighting system for the passenger compartment of a bus using light pipes.
BACKGROUND OF THE INVENTION
Lighting systems for passenger seating areas in mass-transit vehicles frequently include a plurality of fluorescent lamps arranged in rows. Each row of lamps is commonly enclosed within an elongated channel that forms part of an elongated lamp housing. The elongated channel may be connected to or integrally formed with an elongated display panel for holding advertising cards. A lamp housing of this type will also typically include an elongated translucent or transparent light cover disposed across the open side of the channel to aid in controlling the distribution of light emitted from the lamps.
Together, the lamp housing and display panel make up an elongated light fixture. Such light fixtures are typically manufactured in long sections that mount end-to-end in the cornice areas above the passenger seating areas and above the vehicle side windows in mass-transit vehicles. U.S. Pat. No. 4,574,336 issued Mar. 4, 1986 to Mikalonis and U.S. Pat. No. 4,387,415 issued Jun. 7, 1983 to Domas disclose lighting systems of this type.
Fluorescent vehicle lighting systems are inherently difficult to service and require a considerable amount of maintenance. Fluorescent lamps frequently bum out and require replacement. When lighting systems use large numbers of lamps, the odds that one of the lamps will burn out over a given period of time increases. Therefore, the larger the number of lamps that a lighting systems uses, the more often that system will require bulb and ballast replacement.
Lighting systems that use multiple lamps also require multiple lamp sockets and complex wiring harnesses. Wiring harnesses for multiple-lamp lighting systems must connect every lamp socket to an electrical power source. In addition, the lighting fixtures housing the lamps and ballast must be designed to allow easy access for replacing, lamps and ballast.
Systems using multiple lamps inherently leave “dark spots” between lamps. Rows of fluorescent lamps oriented end-to-end leave dark spots where the ends of each lamp plug into a socket and no light is emitted. The dark areas between the lamps are difficult to minimize without extending the lengths of the lamps.
When confronted with applications requiring linear light sources, designers have sometimes turned to fiber optics. Advances in fiber optic technology have made it possible to manufacture linear light sources that can efficiently distribute light both laterally from their circumferences as well as longitudinally from their ends. This type of product is known as a “side-light” or “side-fire” optic or a “side-fire” light pipe.
Lumenyte International Corporation manufactures a “side-fire” light pipe that includes a solid acrylic core with either a circular or an oval cross-section. The diameter of the core is approximately one-half of an inch. A Teflon® cladding surrounds the core and has an index of refraction that causes the light pipe to emit light laterally. A clear jacket surrounds the cladding to reflect a certain amount of light back into the core.
Also available from Lumenyte International Corporation is the LUMENYTE® STARBURST™ OPTIC—a side-fire light pipe with small angled cuts along its length. The cuts create optical discontinuities along the length of the light pipe that increase the amount of light emitted laterally. The depth, angle and spacing of these cuts can be varied to customize light distribution to suit a particular application.
The prior art also includes fiber optic lighting systems that have been proposed for use in vehicular applications. An example of a proposed vehicular application of fiber optic technology is described in U.S. Pat. No. 4,947,293 issued to Johnson et al. The Johnson et al. patent discloses a clearance lighting system for a semi trailer cargo container body. The system includes a light source that end-illuminates elongated light-conducting strips. The strips are supported along both sides of a container body and emit light both longitudinally and laterally. Another Johnson patent, U.S. Pat. No. 5,122,933, discloses a similar fiber optic lighting system that includes a message panel. However, the lighting systems disclosed in the later two patents are not adapted to preferentially distribute light into the passenger seating area of a mass transit vehicle.
Another example of a vehicular application for fiber optic technology is. disclosed in U.S. Pat. No. 4,740,870 issued to Moore et al. The Moore et al. patent discloses a fiber optic lighting system for boats. The system includes a plurality of “end-fire” fiber optic cables that each receive light at one end from a central light source. The cables conduct light longitudinally to light fixtures located at remote locations within a boat.
Two other examples are disclosed in U.S. Pat. No. 4,811,172 to Davenport et al. and U.S. Pat. No. 5,184,883 to Finch et al. Each of these patents discloses a fiber optic lighting system for motor vehicles. The systems include a light source that end-illuminates a plurality of fiber optic filaments. The filaments conduct the light longitudinally to the vehicle head and tail lamp fixtures.
There remains a need for lighting systems that can supply sufficient illumination to meet lighting requirements in passenger seating areas of mass-transit vehicles while reducing the amount of lamps, wiring and maintenance that current systems require.
SUMMARY OF THE INVENTION
In accordance with this invention, an improved lighting system is provided for illuminating a passenger seating area in a mass transit vehicle. The improved system replaces fluorescent tubes with one or more optically coupled light pipes. The light pipes extend between elongated lamp housing sections and the passenger seating area to preferentially distribute light into the passenger seating area while reducing the amount of lamps and maintenance required.
Light pipes may be formed into segments much longer than a fluorescent tube thus minimizing the number of “dark spots” along the length of a light fixture. Because they conduct light, several shorter light pipes may be arranged end-to-end, in series, to extend from a single light source. Consequently, with the exception of the light source, there are no lamps to burn out and require replacement. Such a system does not need complex wiring harnesses because there are fewer lamps and therefore fewer lamp sockets requiring electrical power. Moreover, light sources for illuminating light pipes can be selected that do not require the heavy inverter ballasts that fluorescent lamps require.
According to another aspect of this invention, a lighting system is provided which can be used with either light pipes or fluorescent lamps. The system includes a plurality of light fixtures, each having a pair of end caps disposed at either end of an elongated lamp housing. Each end cap may include either a D-shaped through hole to receive a fluorescent bulb socket or a circular hole to receive a light pipe.
According to another aspect of this invention, an elongated mounting fin integrally and laterally extends from along the length of each light pipe. Each mounting fin either snaps laterally or slides longitudinally into an elongated slot in a lamp housing section. Each fin supports the light pipe it extends from without interrupting the light that the light pipes emit into the seating area.
According to another aspect of this invention, each light fixture additionally includes an air duct extension panel. Each air duct extension panel is adapted to mount between the vehicle side wall and a face panel to space the face panel from the side wall. Each air duct extension panel has an inner edge connected to the face panel lower edge, and an outer edge connected to the vehicle side wall.
According to still another aspect of this invention, each lamp housing section is formed together with one of the air duct extension panels i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Lighting system for mass-transit vehicles does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Lighting system for mass-transit vehicles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lighting system for mass-transit vehicles will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2893464

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.