Apparatus and method for measuring weight of an object in a...

Data processing: measuring – calibrating – or testing – Measurement system – Weight

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S045000, C701S049000

Reexamination Certificate

active

06442504

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to apparatus and methods for measuring weight of an object in a seat and apparatus and methods for adjusting stiffness of the seat.
The present invention also relates to methods and apparatus for ascertaining the identity of objects in a vehicle and methods for adjusting components of or in the vehicle based on the identity of the objects.
The present invention also relates to apparatus and methods for adjusting a vehicle component, system or subsystem in which the occupancy of a seat, also referred to as the “seated state” herein, is evaluated using sensors and the component, system or subsystem may then be adjusted based on the evaluated occupancy thereof. The vehicle component, system or subsystem, hereinafter referred to simply as a component, may be any adjustable component of the vehicle including, but not limited to, the bottom portion and backrest of the seat, the rear view and side mirrors, the brake, clutch and accelerator pedals, the steering wheel, the steering column, a seat armrest, a cup holder, the mounting unit for a cellular telephone or another communications or computing device and the visors. Further, the component may be a system such an as airbag system, the deployment or suppression of which is controlled based on the seated-state of the seat. The component may also be an adjustable portion of a system the operation of which might be advantageously adjusted based on the seated-state of the seat, such as a device for regulating the inflation or deflation of an airbag that is associated with an airbag system.
The present invention also relates to apparatus and method for automatically adjusting a vehicle component to a selected or optimum position for an occupant of a seat based on two measured morphological characteristics of the occupant. Morphological characteristics include the weight of the occupant, the height of the occupant measured from the seat, the length of the occupant's arms, the length of the occupant's legs, the occupant's head diameter and the inclination of the occupant's back relative to the seat bottom. Other morphological characteristics are also envisioned for use in the invention.
BACKGROUND OF THE INVENTION
Automobiles equipped with airbags are well known in the prior art. In such airbag systems, the car crash is sensed and the airbags rapidly inflated thereby ensuring the safety of an occupation in a car crash. Many lives have now been saved by such airbag systems. However, depending on the seated state of an occupant, there are cases where the life of the occupant cannot be saved even by present airbag systems. For example, when a passenger is seated on the front passenger seat in a position other than a forward facing, normal state, e.g., when the passenger is out of position and near the deployment door of the airbag, there will be cases when the occupant will be seriously injured or even killed by the deployment of the airbag.
Also, sometimes a child seat is placed on the passenger seat in a rear facing position and there are cases where a child sitting in such a seat has been seriously injured or killed by the deployment of the airbag.
Furthermore, in the case of a vacant seat, there is no need to deploy an airbag, and in such a case, deploying the airbag is undesirable due to a high replacement cost and possible release of toxic gases into the passenger compartment. Nevertheless, most airbag systems will deploy the airbag in a vehicle crash even if the seat is unoccupied.
For these reasons, there has been proposed a seated-state detecting unit such as disclosed in the following U.S. Patents and Patent applications, which are included herein by reference, assigned to the current assignee of the present application: Breed et al. (U.S. Pat. No. 5,563,462); Breed et al (U.S. Pat. No. 5,829,782); Breed et al (U.S. Pat. No. 5,822,707): Breed et al (U.S. Pat. No. 5,694,320); Breed et al (U.S. Pat. No. 5,748,473); and Varga et al (U.S. Pat. No. 5,943,295). Typically, in some of these designs four sets of sensors are installed at four points in a vehicle passenger compartment for transmitting ultrasonic or electromagnetic waves toward the passenger or driver's seat and receiving the reflected waves. Using appropriate hardware and software, the approximate configuration of the occupancy of either the passenger or driver seat can be determined thereby identifying and categorizing the occupancy of the relevant seat.
However, in the aforementioned literature using ultrasonics, the pattern of reflected ultrasonic waves from an adult occupant who may be out of position is sometimes similar to the pattern of reflected waves from a rear facing child seat. Also, it is sometimes difficult to discriminate the wave pattern of a normally seated child with the seat in a rear facing position from an empty seat with the seat in a more forward position. In other cases, the reflected wave pattern from a thin slouching adult with raised knees can be similar to that from a rear facing child seat. In still other cases, the reflected pattern from a passenger seat which is in a forward position can be similar to the reflected wave pattern from a seat containing a forward facing child seat or a child sitting on the passenger seat. In each of these cases, the prior art ultrasonic systems can suppress the deployment of an airbag when deployment is desired or, alternately, can enable deployment when deployment is not desired.
If the discrimination between these cases can be improved, then the reliability of the seated-state detecting unit can be improved and more people saved from death or serious injury. In addition, the unnecessary deployment of an airbag can be prevented.
The adjustment of an automobile seat occupied by a driver of the vehicle is now accomplished by the use of either electrical switches and motors or by mechanical levers. As a result, the driver's seat is rarely placed at the proper driving position which is defined as the seat location which places the eyes of the driver in the so-called “eye ellipse” and permits him or her to comfortably reach the pedals and steering wheel. The “eye ellipse” is the optimum eye position relative to the windshield and rear view mirror of the vehicle.
The eye ellipse, which is actually an ellipsoid, is rarely achieved by the actions of the driver for a variety of reasons. One specific reason is the poor design of most seat adjustment systems particularly the so-called “4-way-seat”. It is known that there are three degrees of freedom of a seat bottom, namely vertical, longitudinal, and rotation about the lateral or pitch axis. The 4-way-seat provides four motions to control the seat: (1). raising or lowering the front of the seat, (2) raising or lowering the back of the seat, (3) raising or lowering the entire seat, (4) moving the seat fore and aft. Such a seat adjustment system causes confusion since there are four control motions for three degrees of freedom. As a result, vehicle occupants are easily frustrated by such events as when the control to raise the seat is exercised, the seat not only is raised but is also rotated. Occupants thus find it difficult to place the seat in the optimum location using this system and frequently give up trying leaving the seat in an improper driving position.
Many vehicles today are equipped with a lumbar support system that is never used by most occupants. One reason is that the lumbar support cannot be preset since the shape of the lumbar for different occupants differs significantly, i.e., a tall person has significantly different lumbar support requirements than a short person. Without knowledge of the size of the occupant, the lumbar support cannot be automatically adjusted.
As discussed in the above referenced '320 patent, in approximately 95% of the cases where an occupant suffers a whiplash injury, the headrest is not properly located to protect him or her in a rear impact collision. Also, the stiffness and damping characteristics of a seat are fixed and no attempt is made in

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for measuring weight of an object in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for measuring weight of an object in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for measuring weight of an object in a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2890067

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.