Method for aerial distribution of pollinating agents

Plant husbandry – Pollination aids

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C449S001000

Reexamination Certificate

active

06357171

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention discloses a novel method for aerial distribution of pollinating agents into a field by either propelling the agent through the air from the field periphery or dropping the agent into the field from above. Aerial distribution of pollinating agents is a particularly effective, efficient, and economic means of achieving uniform pollination of large fields of row crops.
2. Background Art
Plant pollination by the honeybee (
Apis mellifera
) is by far the most common means of commercial crop pollination in the world. This pollination method depends on a single key element in honeybee natural history, the insect's social nature that is physically expressed as the beehive. Because the beehive is the essential center of any honeybee's existence the entire colony of 20,000 to 40,000 bees can be controlled by manipulation of the hive, and the business of a migratory beekeeper is largely based on moving hives about the country to pollinate crops for profit. A single hive typically weights 80 to 120 pounds, occupies about 9 cubic feet, and is filled with a delicate matrix of cells containing food, material, and developing bees essential to the operation and survival of the colony. Hive-based commercial migratory pollination is a place-and-retrieve operation where the honeybee hive is brought to the field for the duration of the bloom, subsequently retrieved from the field, loaded on flatbed trucks, transported to the next bloom locale, and deployed once again to service a new orchard or field. The logistics of the field deployment requires heavy equipment in the form of front loaders to load, unload, and position the hives at convenient access points near the target cultivar. For large field crops like sunflowers, canola, cotton, peanuts, mustard and similar cultivars the hives are distributed in clusters at the edges of the fields. Such large cultivar monocultures range in size from relatively small fields of 40 acres to mile-long sections containing hundreds and even thousands of acres. And in most nations, including the United States and Canada, the trend continues towards larger farms with even larger row crop fields that maximize the inherent efficiencies of mechanization and the growing practice of precision agriculture. This trend has continued despite clear evidence over several decades that shows honeybee hives placed at the periphery of these large-scale monoculture do not adequately pollination much of the field's interior.
Sunflowers are an example where a less than optimal crop is produced by inadequate pollination agent distribution. Sunflowers originated in the High Plains of North America where native and early cultivar varieties of the sunflower were self-incompatible and required indigenous insect pollination for a viable seed crop. As mechanization made larger fields possible the numbers and distribution of these native pollinating agents became too low to ensure an adequate seed set and crop yields declined. Sunflower hybrids were selectively breed to possess high levels of self-compatibility to overcome this pollination problem by simply not requiring a pollinating agent to produce a seed. And though self-compatible sunflower hybrids usually outproduce self-incompatible varieties in mass plantings, it is also known that many of these modem hybrids will actually produce even better when adequately pollinated by insects. Literature from several recent investigations indicates that in most modem sunflower hybrids, seed set, seed oil percentage, seed yields, and oil yields increased when pollinators (primarily bees) were present Yields increased as much as 48.8 percent and oil percentages increased 6.4 percentage in hybrid crops fully exposed to bee pollination activities (North Dakota State University, 1995). The problem is that the physical dimensions of large fields prevent pollinator penetration much beyond a relatively narrow band along the edges where the honeybee hives are placed. The problem of pollinator placement for sunflowers has been well understood for several decades. In the 1970's McGregor's classic work on pollination summarized the many findings to that time by simply stating “If there is a shortage of honey bees in the sunflower fields, a small seed crop is harvested” (McGregor, pp. 345-351, 1976). McGregor discussed many studies that indicated the benefits of pollination beyond roughly 300 feet from the honeybee hive became difficult to detect if found at all. To prevent the sharp decline in crop yield from inadequate pollination the practice of convergence or saturation pollination was recommended where the hives are to be distributed in a pattern that uniformly disperses the bees throughout the entire field. In the United States the specific distribution pattern advocated in 1962 was for distributing the honeybees every tenth of a mile (528 feet) in each direction in the field so the flight radius would only be some 264 feet. In the hybrid field plantings of today with higher plant densities per acre, larger seed heads, and more uniformity of bloom timing this 40-year old recommendation for a radius flight distance is probably much too high to achieve an actual condition of saturation pollination. In a typical mile-long quarter section (5280×1320 feet, 160 acres) sunflower field with hives uniformly spaced around the edge, over 75 percent of the plants can receive no effective honeybee pollination. Larger fields have correspondingly higher percentages of inadequate pollination; even a relatively small square field of 40 acres can have 50 percent of its area inadequately pollinated. The usual reasons given by the migratory beekeepers why hives can not be uniformly distributed within a field are the significantly greater, if not impossible, time and logistics requirements associated with the placement, maintenance, and retrieval of hives located at hundreds of points in a field. Clustering hives located at a relative few points around the edges is the only practical method of dispersal. Reasons given by the growers for no interior dispersal are equally clear, they do not want hive access alleys cut into their crops. Such inroads exposes the plants to wind damage, aids in weed establishment, entails crop land loss, promotes soil compaction, provides pest access, contributes to soil erosion, and the widely dispersed hives constrain spraying schedules while in general creating both work and inconvenience. The grower simply does not need more things to do, monitor, and worry about. Less than optimal sunflower hybrid crop yields without the aid of a pollination agent are acceptable as long as the costs, problems, and inconveniences of uniformly distributing honeybee hives are greater than the potential benefits.
Similar insufficient pollination conditions exist for other large field crops such as canola, cotton, mustard, peanuts, safflower, soybeans, and tomatoes. In each case these crops are grown in very large monoculture fields that would substantially benefit by a uniform pattern of saturation pollination it could be made practical and economical. And in each case the hive method by virtue of its weight, size, damage sensitivity, heavy equipment logistics, and retrieval requirements has proven inadequate in providing a pollinating service beyond a narrow band some 250 feet from the field's edge that leaves much of the crop area simply underdeveloped.
No known technology exists for the aerial distribution of pollinating agents into a field by launching them from the field's periphery or dropping them from above through the air. Obviously the honeybee hive by weight, size, and delicate cell structure is not a candidate for such deployment; the image of a beehive being catapulted through the air may have a precedent in ancient marine warfare but not crop pollination. Dropping a hive even a few feet is sufficient to cause significant interior damage and produce long-term injury to the honeybee colony. No one has achieved aerial distribution of honey

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for aerial distribution of pollinating agents does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for aerial distribution of pollinating agents, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for aerial distribution of pollinating agents will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2888696

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.