Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai
Reexamination Certificate
1999-05-20
2002-04-23
Carlson, Karen Cochrane (Department: 1653)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Peptide containing doai
C530S350000, C530S383000, C435S069100, C435S069600, C435S173300, C435S320100, C435S252300, C536S023500
Reexamination Certificate
active
06376463
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates generally to a hybrid factor VIII having human and animal factor VIII amino acid sequence or having human factor VIII and non-factor VIII amino acid sequence and methods of preparation and use thereof.
Blood clotting begins when platelets adhere to the cut wall of an injured blood vessel at a lesion site. Subsequently, in a cascade of enzymatically regulated reactions, soluble fibrinogen molecules are converted by the enzyme thrombin to insoluble strands of fibrin that hold the platelets together in a thrombus. At each step in the cascade, a protein precursor is converted to a protease that cleaves the next protein precursor in the series. Cofactors are required at most of the steps.
Factor VIII circulates as an inactive precursor in blood, bound tightly and non-covalently to von Willebrand factor. Factor VIII is proteolytically activated by thrombin or factor Xa, which dissociates it from von Willebrand factor and activates its procoagulant function in the cascade. In its active form, the protein factor VIIIa is a cofactor that increases the catalytic efficiency of factor IXa toward factor X activation by several orders of magnitude.
People with deficiencies in factor VIII or antibodies against factor VIII who are not treated with factor VIII suffer uncontrolled internal bleeding that may cause a range of serious symptoms, from inflammatory reactions in joints to early death. Severe hemophiliacs, who number about 10,000 in the United States, can be treated with infusion of human factor VIII, which will restore the blood's normal clotting ability if administered with sufficient frequency and concentration. The classic definition of factor VIII, in fact, is that substance present in normal blood plasma that corrects the clotting defect in plasma derived from individuals with hemophilia A.
The development of antibodies (“inhibitors” or “inhibitory antibodies”) that inhibit the activity of factor VIII is a serious complication in the management of patients with hemophilia. Autoantibodies develop in approximately 20% of patients with hemophilia A in response to therapeutic infusions of factor VIII. In previously untreated patients with hemophilia A who develop inhibitors, the inhibitor usually develops within one year of treatment. Additionally, autoantibodies that inactivate factor VIII occasionally develop in individuals with previously normal factor VIII levels. If the inhibitor titer is low enough, patients can be managed by increasing the dose of factor VIII. However, often the inhibitor titer is so high that it cannot be overwhelmed by factor VIII. An alternative strategy is to bypass the need for factor VIII during normal hemostasis using factor IX complex preparations (for example, KONYNE®, Proplex®) or recombinant human factor VIIa. Additionally, since porcine factor VIII usually has substantially less reactivity with inhibitors than human factor VIII, a partially purified porcine factor VIII preparation (HYATE:C®) is used. Many patients who have developed inhibitory antibodies to human factor VIII have been successfully treated with porcine factor VIII and have tolerated such treatment for long periods of time. However, administration of porcine factor VIII is not a complete solution because inhibitors may develop to porcine factor VIII after one or more infusions.
Several preparations of human plasma-derived factor VIII of varying degrees of purity are available commercially for the treatment of hemophilia A. These include a partially-purified factor VIII derived from the pooled blood of many donors that is heat- and detergent-treated for viruses but contain a significant level of antigenic proteins; a monoclonal antibody-purified factor VIII that has lower levels of antigenic impurities and viral contamination; and recombinant human factor VIII, clinical trials for which are underway. Unfortunately, human factor VIII is unstable at physiologic concentrations and pH, is present in blood at an extremely low concentration (0.2 &mgr;g/ml plasma), and has low specific clotting activity.
Hemophiliacs require daily replacement of factor VIII to prevent bleeding and the resulting deforming hemophilic arthropathy. However, supplies have been inadequate and problems in therapeutic use occur due to difficulty in isolation and purification, immunogenicity, and the necessity of removing the AIDS and hepatitis infectivity risk. The use of recombinant human factor VIII or partially-purified porcine factor VIII will not resolve all the problems.
The problems associated with the commonly used, commercially available, plasma-derived factor VIII have stimulated significant interest in the development of a better factor VIII product. There is a need for a more potent factor VIII molecule so that more units of clotting activity can be delivered per molecule; a factor VIII molecule that is stable at a selected pH and physiologic concentration; a factor VIII molecule that is less apt to cause production of inhibitory antibodies; and a factor VIII molecule that evades immune detection in patients who have already acquired antibodies to human factor VIII.
It is therefore an object of the present invention to provide a factor VIII that corrects hemophilia in a patient deficient in factor VIII or having inhibitors to factor VIII.
It is a further object of the present invention to provide methods for treatment of hemophiliacs.
It is still another object of the present invention to provide a factor VIII that is stable at a selected pH and physiologic concentration.
It is yet another object of the present invention to provide a factor VIII that has greater coagulant activity than human factor VIII.
It is an additional object of the present invention to provide a factor VIII against which less antibody is produced.
SUMMARY OF THE INVENTION
The present invention provides isolated, purified, hybrid factor VIII molecules and fragments thereof with coagulant activity including hybrid factor VIII having factor VIII amino acid sequence derived from human and pig or other non-human mammal (together referred to herein as “animal”); or in a second embodiment including a hybrid equivalent factor VIII having factor VIII amino acid sequence derived from human or animal or both and amino acid sequence having no known sequence identity to factor VIII (“non-factor VIII amino acid sequence”), preferably substituted in an antigenic and/or immunogenic region of the factor VIII, is described. One skilled in the art will realize that numerous hybrid factor VIII constructs can be prepared including, but not limited to, human/animal factor VIII having greater coagulant activity than human factor VIII (“superior coagulant activity”); non-immunogenic human/equivalent factor VIII; non-antigenic human/equivalent or human/animal factor VIII; non-immunogenic human/animal or human/equivalent factor VIII having superior coagulant activity; non-antigenic human/animal or human/animal/equivalent factor VIII having superior coagulant activity; non-immunogenic, non-antigenic human/equivalent or human/equivalent/animal factor VIII; and non-immunogenic, non-antigenic human/animal/equivalent factor VIII having superior coagulant activity.
The hybrid factor VIII molecule is produced by isolation and recombination of human and animal factor VIII subunits or domains; or by genetic engineering of the human and animal factor VIII genes.
In a preferred embodiment, recombinant DNA methods are used to substitute elements of animal factor VIII for the corresponding elements of human factor VIII, resulting in hybrid human/animal factor VIII molecules. In a second preferred embodiment, recombinant DNA methods are used to replace one or more amino acids in the human or animal factor VIII or in a hybrid human/animal factor VIII with amino acids that have no known sequence identity to factor VIII, preferably a sequence of amino acids that has less immunoreactivity with naturally occurring inhibitory antibodies to factor VIII (“nonantigenic amino acid sequence”) and/or is less apt to elicit the
Carlson Karen Cochrane
Emory University
Greenlee Winner and Sullivan PC
Robinson Hope A.
LandOfFree
Modified factor VIII does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Modified factor VIII, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modified factor VIII will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2884117