Fluid containing endoluminal stent

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Arterial prosthesis – Drug delivery

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C623S001220, C606S194000, C604S058000, C604S500000

Reexamination Certificate

active

06358276

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to endoluminal devices, and more particularly to stents.
2. Description of Related Art
Stents and similar endoluminal devices have been used to expand a constricted vessel to maintain an open passageway through the vessel in many medical situations, for example, following angioplasty of a coronary artery. In these situations, stents are useful to prevent restenosis of the dilated vessel through proliferation of vascular tissues. Stents can also be used to reinforce collapsing structures in the respiratory system, the reproductive system, biliary ducts or any tubular body lumens. Whereas in vascular applications fatty deposits or “plaque” frequently cause the stenosis, in many other body lumens the narrowing or closing may be caused by malignant tissue.
Fluids have traditionally been used to pressurize the angioplasty balloons used to open restricted vessels. The balloons may have a variety of shapes including a coiled form. In such a device fluid is injected into the balloon to inflate the device and maintain turgidity. Shturman (U.S. Pat. No. 5,181,911) discloses a perfusion balloon catheter wound into a helically coiled shape with one end attached to a fitting and the other to a syringe for inflating the balloon with fluid. When the balloon is inflated, its coiled form allows blood flow thorough the open center of the structure. At the same time it is possible to actually have fluid flow within the balloon structure so that the syringe can deliver fluid into the balloon, fluid can flow through the balloon, and fluid can then exit through a second lumen in a catheter attached to the syringe.
Coiled stents that are connected to a catheter apparatus, as in Wang et al. (U.S. Pat. No. 5,795,318), are used for temporary insertion into a patient. Wang et al. discloses a coiled stent of shape-memory thermoplastic tube that can be converted from a relatively narrow diameter to a larger coiled form by heating. The narrow diameter coil is mounted at the end of a catheter over a balloon and in a preferred embodiment a resistive heating element runs down the length of the thermoplastic element. An electric current is applied to heat the element thereby softening it while the balloon is expanded to enlarge the diameter of the coil. Upon cooling the enlarged coil hardens and the balloon is withdrawn. After the temporary stent has performed its duty, it is again heated and removed while in the softened state. In one embodiment the thermoplastic tube is supplied with an additional lumen so that liquid drugs can flow into the stent and delivered through apertures or semipermeable regions.
The attempt to kill or prevent proliferation cells is a common theme in clinical practice. This is generally true in vascular and non-vascular lumens. It is known that ionizing radiation can prevent restenosis and malignant growth. Although the effect of temperature extremes, e.g., cryogenic (cold) or hot temperatures, on cellular activity is not as well researched, it may provide a safer approach to control of tissue proliferation. Among the drawbacks of the prior art coiled balloons is that the balloon material is relatively weak so that expansion and contraction cause the balloon to fail. Failure of a balloon containing radioactive or cryogenic fluids could be catastrophic. It would be desirable to provide a catheter based, minimally invasive device for stenting support that could deliver hot or cryogenic or radioactive fluids or drugs and that would be sturdy and could remain in the body for extended periods of time, detached from the insertion device.
SUMMARY OF THE INVENTION
In its simplest embodiment the present invention is an endoluminal coil stent comprising a hollow tube formed into a series of loops or other known stent shapes which initially has a low profile and diameter. This structure can be delivered into a patient's vascular system and expanded to full size. The present invention to provides a stent that is hollow allowing the passage of fluid. The stent has either one or a plurality of passageways for fluid flow. The stent is attached to a catheter via a special fitting so that when engaged with the catheter, fluid flows freely from the catheter to the stent with a possible return circuit through the catheter. When disengaged, the fitting prevents leakage from the stent permitting the stent to remain in place in a patient's vasculature.
This invention provides a way of treating vascular areas affected with malignant growths or experiencing restenosis from smooth muscle cell proliferation, etc. The stent is inserted in a small diameter configuration and after being enlarged to a larger diameter, acts as a support device for the areas of restenosis or malignant growth. In addition, the stent can treat these affected areas in a unique way by flowing radioactive, heated or cryogenic fluids through the stent.
The present invention also provides a way of delivering drugs to an affected site. A stent to accomplish this purpose can be composed of several different materials. For example, the stent can formed from a metal or other material with small pores machined or otherwise formed (e.g., with a laser). When such a stent is filed with a drug, that drug slowly disperses through the pores. Alternatively, an entire metal tube or portions of the tube could be formed e.g., from sintered metal powder thereby forming a porous structure for drug delivery. Another embodiment would alternate a metal tube (for structural stability) with dispensing segments inserted at various intervals. The segments would be perforated to allow seepage of the drug or would be otherwise formed from a porous material. Another embodiment employs an expanded polytetrafluoroethylene (PTFE) tube around a support wire or metal tube in the form of a coiled stent so that a hollow passageway is created between the metal and the PTFE. A drug is flowed into this space and slowly dispensed through the porous PTFE.
One embodiment of the hollow stent of the present invention comprises a shape memory metal such as nitinol. Shape memory metals are a group of metallic compositions that that have the ability to return to a defined shape or size when subjected to certain thermal or stress conditions. Shape memory metals are generally capable of being deformed at a relatively low temperature and, upon exposure to a relatively higher temperature, return to the defined shape or size they held prior to the deformation. This enables the stent to be inserted into the body in a deformed, smaller state so that it assumes its “remembered” larger shape once it is exposed to a higher temperature (i.e. body temperature or heated fluid) in vivo.
Special fittings are incorporated at the ends of the hollow stent. These fittings facilitate the injection and removal of fluid and also allow the stent to be detached from the insertion device to be left in place in a patient. The hollow stent has an inlet and an outlet so that a complete fluid path can be created, and fluid can be continually circulated through the stent. In the simplest configuration the inlet and outlet are at opposite ends of the stent. However, if the stent is equipped with a plurality of lumens, two lumens can be connected at a distal end of the structure so that the outlet and inlet are both together at one end. Other arrangements can be readily envisioned by one of ordinary skill in the art.
The stent is inserted into the body while connected to a catheter in a small, deformed state. Once inside the patient's body the stent is advanced to a desired position and expanded to its larger full size. If the stent is composed of shape memory metal, for example, the stent expands from its small-deformed state to its remembered larger state due to the higher body temperature or due to the passage of “hot” fluid through the stent. Subsequently “treatment” fluid (e.g., heated, cryogenic or radioactive) is pumped through the catheter to the stent where it is circulated throughout the stent, t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fluid containing endoluminal stent does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fluid containing endoluminal stent, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fluid containing endoluminal stent will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2881913

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.