Detection of conversion to mucoidy in Pseudomonas aeruginosa...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S252300, C435S320100, C435S325000, C536S023100, C536S023700, C536S024320

Reexamination Certificate

active

06426187

ABSTRACT:

BACKGROUND OF THE INVENTION
Cystic Fibrosis (CF) is the most common inheritable lethal disease among Caucasians. There are approximately 25,000 CF patients in the U.S.A. The frequency of CF in several other countries (e.g., Canada, United Kingdom, Denmark) is high (ranging from 1 in 400 to 1 in 1,600 live births). There are numerous CF centers in the U.S.A. and Europe—specialized clinical facilities for diagnosing and treating children and adolescents with CF.
Chronic respiratory infections caused by mucoid
Pseudomonas aeruginosa
are the leading cause of high morbidity and mortality in CF. The initially colonizing
P. aeruginosa
strains are nonmucoid but in the CF lung they inevitably convert into the mucoid form. The mucoid coating composed of the exopolysaccharide alginate leads to the inability of patients to clear the infection, even under aggressive antibiotic therapies. The emergence of the mucoid form of
P. aeruginosa
is associated with further disease deterioration and poor prognosis.
The microcolony mode of growth of
P. aeruginosa
, embedded in exopolysaccharide biofilms in the lungs of CF patients (Costerton et al., 1983), among other functions, plays a role in hindering effective opsonization and phagocytosis of
P. aeruginosa
cells (Pier et al., 1987; Pier 1992). Although CF patients can produce opsonic antibodies against
P. aeruginosa
antigens, in most cases phagocytic cells cannot effectively interact with such opsonins (Pressler et al., 1992; Pier et al., 1990; Pier 1992). Physical hindrance caused by the exopolysaccharide alginate and a functionally important receptor-opsonin mismatch caused by chronic inflammation and proteolysis are contributing factors to these processes (Pedersen et al., 1990; Tosi et al., 1990; Pier, 1992). Under such circumstances, the ability of
P. aeruginosa
to produce alginate becomes a critical persistence factor in CF; consequently, selection for alginate overproducing (mucoid) strains predominates in the CF lung.
Synthesis of alginate and its regulation has been the object of numerous studies (Govan, 1988; Ohman et al., 1990; Deretic et al., 1991; May et al., 1991). It has been shown that several alginate biosynthetic genes form a cluster at 34 min of the chromosome (Darzins et al., 1985), and that the algD gene, encoding GDP mannose dehydrogenase, undergoes strong transcriptional activation in mucoid cells (Deretic et al., 1987; 1991). GDP mannose dehydrogenase catalyzes double oxidation of GDP mannose into its uronic acid, a reaction that channels sugar intermediates into alginate production. The transcriptional activation of algD has become a benchmark for measuring molecular events controlling mucoidy (Deretic et al., 1991; Ohman et al., 1990; May et al., 1991). Studies of these processes have lead to the uncovering of several cis- and trans-acting elements controlling algD promoter activity: (i) The algD promoter has been shown to consist of sequences unusually far upstream of the mRNA start site (Mohr et al., 1990). These sequences (termed RB1 and RB2), as well as a sequence closer to the mRNA start site (RB3) are needed for the full activation of algD (Mohr et al., 1990; 1991; 1992). (ii) AlgR, a response regulator from the superfamily of bacterial signal transduction systems (Deretic et al., 1989), binds to RB1, RB2, and RB3, and is absolutely required for high levels of algD transcription (Mohr et al., 1990; 1991; 1992). (iii) Another signal transduction factor, AlgB, also contributes to the expression of genes required for alginate synthesis (Wozniak and Ohman, 1991). (iv) The peculiar spatial organization of AlgR binding sites imposes steric requirements for the activation process. The conformation of the algD promoter appears to be affected by histone like proteins [e.g. Alg (H
p
1) (Deretic et al., 1992) and possibly IHF (Mohr and Deretic, 1992)], and perhaps by other elements controlling nucleoid structure and DNA topology. (v) The algD promoter does not have a typical −35/−10 canonical sequence (Deretic et al., 1989). It has been proposed that RpoN may be the sigma factor transcribing this promoter; however, several independent studies have clearly ruled out its direct involvement (Mohr et al., 1990; Totten et al., 1990). The present inventors have cloned and characterized a new gene; algU, which plays a critical role in algD expression (Martin et al., 1993). The algU gene encodes a polypeptide product that shows sequence and domainal similarities to the alternative sigma factor Spo0H from Bacillus spp. (Dubnau et al., 1988). Spo0H, although dispensable for vegetative growth, is responsible for the initial events in the triggering of the major developmental processes in
Bacillus subtilis
, viz. sporulation and competence (Dubnau et al., 1988; Dubnau, 1991). These findings suggest that activation of alginate synthesis may represent a cell differentiation process participating in interconversions between planktonic organisms and biofilm embedded forms in natural environments (Martin et al., 1993; Costerton et al., 1987).
Inactivation of algU abrogates algD transcription and renders cells nonmucoid, further strengthening the notion that algU plays an essential role in the initiation of mRNA synthesis at algD (Martin et al., 1993). algU maps in the close vicinity of muc markers that have been demonstrated in the classical genetic studies by Fyfe and Govan (1980) to cause the emergence of mucoid strains constitutively overproducing alginate. The mucoidy-causing property of muc mutations has been based on the ability of different muc alleles (e.g. muc-2, muc-22, and muc-25) to confer mucoidy in genetic crosses (Fyfe and Govan, 1980; 1983). The present application describes the presence of additional genes immediately downstream of algU, termed mucA and mucB, which also play a role in the regulation of mucoidy.
Detection of mucoid
P. aeruginosa
is a standard practice, however, due to the variability in expression of mucoidy on standard clinical media, more objective detection methods are needed. An early detection of conversion to mucoidy will be possible by using the present invention.
SUMMARY OF THE INVENTION
The present invention provides compositions and methods for the early detection and diagnosis of the conversion to mucoidy of
Pseudomonas aeruginosa
. The present invention also provides a molecular mechanism for the conversion from the nonmucoid to the mucoid state, including specific sequence alterations that occur in the mucA gene that cause the conversion and molecular probes for the early detection of this disease state.
“Recombinant,” as used herein, means that a protein is derived from recombinant (e.g., microbial) expression systems. “Microbial” refers to recombinant proteins made in bacterial or fungal. (e.g., yeast) expression systems. As a product, “recombinant microbial” defines a protein produced in a microbial expression system which is essentially free of native endogenous substances. Protein expressed in most bacterial cultures, e.g.,
E. coli
, will be free of glycan.
“Biologically active,” as used throughout the specification means that a particular molecule shares sufficient amino acid sequence similarity with the embodiments of the present invention disclosed herein to be capable of forming a algU-mucA-mucB complex, thereby repressing gene transcription from the algD promoter.
“DNA sequence” refers to a DNA polymer, in the form of a separate fragment or as a component of a larger DNA construct. Preferably, the DNA sequences are in a quantity or concentration enabling identification, manipulation, and recovery of the sequence and its component nucleotide sequences by standard biochemical methods, for example, using a cloning vector. Such sequences are preferably provided in the form of an open reading frame uninterrupted by internal nontranslated sequences. Genomic DNA containing the relevant sequences could also be used. Sequences of non-translated DNA may be present 5′ or 3′ from the open reading frame, where the same do not interfere with manipula

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Detection of conversion to mucoidy in Pseudomonas aeruginosa... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Detection of conversion to mucoidy in Pseudomonas aeruginosa..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Detection of conversion to mucoidy in Pseudomonas aeruginosa... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2880147

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.