Container having a hermetic seal

Chemistry: electrical current producing apparatus – product – and – Current producing cell – elements – subcombinations and... – Cell enclosure structure – e.g. – housing – casing – container,...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C429S174000, C429S175000, C220S612000

Reexamination Certificate

active

06361898

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to the conversion of chemical energy t o electrical energy. More particularly, the present invention relates to the art of sealing an electrochemical cell or battery and, still more particularly, to hermetically sealing the electrolyte charging or fill opening in an electrochemical cell by means of a unitary sealing member. The unitary sealing member of the present invention is first force-fit into sealing registry with the electrolyte fill opening to provide a secondary seal that prevents out gassed by-products from compromising the primary, hermetic weld between the sealing member and the cell casing.
2. Prior Art
Leakage of electrolyte and gases from an electro chemical cell caused by a compromised seal is extremely undesirable and can even be fatal when the cell is used as the power source for an implantable medical device and the like. In electrochemical cells having a metal casing, one means of providing a hermetic seal for an electrolyte fill opening and the like is by welding a seal member in the casing. However, the casing proximate the weld conducts heat to the electrolyte contained therein and some electrolyte evaporation invariably occurs. When these gases escape from the cell casing they are referred to as out gassed by-products and such escaping gases leave pin holes in the weld thereby compromising hermeticity.
U.S. Pat. No. 5,004,656 to Sato et al. discloses a flat-type battery having a hermetically sealed electrolyte charging opening. The sealing member consists of a spherically-shaped body press-fit into sealing registry with the charging opening followed by a disc-shaped plate covering the sealing body and welded to the battery casing. The spherically-shaped sealing body and the disc-shaped plate can be separate members or combined as an integral unit. In any event, this prior art patent discloses that the press fit sealing body prevents compromise of the weld between the disc-shaped plate and the battery casing caused by escaping out gassed by-products.
Thus, the prior art recognizes that it is extremely important for a hermetically sealed cell to retain its manufactured, gas tight condition, even after prolonged periods of storage or use. This is nowhere more important than in electrochemical cells used in implantable medical devices and the like. Sato et al. and others have recognized that simply welding a sealing means over a cell opening does not necessarily assure gas tight hermeticity. Instead a secondary seal is required to prevent evaporated electrolyte gases from escaping and causing the formation of pin holes in the primary weld. However, it is also desirable to minimize the size of such cells by reducing their volume and to simplify the manufacturing and assembly processes by reducing the number of cell components. Furthermore, the seal member should be confined within the perimeter of the electrolyte fill opening and not protrude beyond the outer surface of the cell casing to provide the casing with an aesthetic profile. Therefore, in addition to providing a hermetically sealed fluid filled container, uncompromised by out gassed by-products, a primary object of the present invention is that the seal does not hinder the insertion of the container, for example, a cell or battery, into a receptacle for the cell in an implantable medical device and the like, where a premium is placed on economy of size.
SUMMARY OF THE INVENTION
The present invention addresses and solves the problems indicated above by providing a unitary sealing member, preferably of metal, that reliably, efficiently and hermetically closes an opening in a fluid filled container. In an electrochemical cell, the opening can be the electrolyte fill opening in a cell casing. In assembly, the present sealing member is first force-fit into sealing registry with the electrolyte fill opening to provide a secondary seal for the opening. In this position, an outwardly projecting bulbous portion or proturbance of the sealing member is somewhat recessed or flush with the casing side wall surrounding the fill opening. The bulbous portion is then welded to the casing while the secondary seal prevents out gassed by-products from compromising hermeticity. In that respect, not only does the present unitary sealing member provide a hermetic seal for the electrolyte fill opening, but no portion of the sealing member extends beyond the opening to the outer surface of the casing. Consequently, the profile of the cell is not interrupted by the seal and the outer surface of the casing remains free of sealing welds.
The foregoing and additional advantages of the present invention will be readily apparent upon a reading of the following detailed description together with the appended drawings.


REFERENCES:
patent: 2372885 (1945-04-01), Derby
patent: 3458224 (1969-07-01), Freese
patent: 5776632 (1998-07-01), Honegger

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Container having a hermetic seal does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Container having a hermetic seal, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Container having a hermetic seal will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2880059

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.