Fluid handling system and method of manufacture

Fluid handling – Processes – Cleaning – repairing – or assembling

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C137S597000, C137S606000

Reexamination Certificate

active

06386219

ABSTRACT:

TECHNICAL FIELD
The present invention relates to fluid handling systems and, particularly, to methods and apparatus for depositing biological materials in a pattern of array features on a surface of a solid support.
BACKGROUND ART
Chemical and biological research, development, and manufacturing, in fields such as combinatorial chemistry, genomics, and proteomics, often requires the simultaneous handling of small quantities of many different fluids including gases and liquids. Gases can often be handled easily using tubing and manifolds, but liquid handling is often difficult.
Liquid samples are often handled and stored in microtiter plates. Microtiter plates are rectangular trays made of glass or plastic. They contain many small liquid reservoirs adjacent to one another for reacting and storing liquids in typical arrays sizes of 96 in an 8×12 array of 400 microliter (&mgr;l) wells on 9 millimeter (mm) spacing, 384 in a 16×24 array of 100 &mgr;l wells on 4.5 mm spacing, or 1536 in a 32×48 array of 10 &mgr;l wells on 2.25 mm spacing. Transferring the many liquid samples from microtiter plates to other formats such as microarrays presents many challenges.
Microarrays of binding agents have become an increasingly important tool in the biotechnology industry and related fields. Such arrays, in which such binding agents as oligonucleotides or peptides are deposited onto a solid support surface in the form of an array or pattern, can be useful in a variety of applications, including gene expression analysis, drug screening, nucleic acid sequencing, mutation analysis, and the like.
Such arrays may be prepared in any of a variety of different ways, many of which rely on transferring liquids from an array of liquid samples in one or more microtiter plates to the substrate on which the microarray is formed. For example, DNA arrays may be prepared manually by spotting DNA onto the surface of a substrate with a micropipette. Or, a dot-blot approach or a slot-blot approach may be employed in which a vacuum manifold transfers aqueous DNA samples from a plurality of reservoirs to a substrate surface. Or, an array of pins can be dipped into an array of fluid samples and then contacted with the substrate surface to produce the array of sample materials. Or, an array of capillaries can be used to produce biopolymeric arrays.
In an alternative approach, arrays of biopolymeric agents are constructed in discrete regions on the surface of the substrate.
There is a continued interest in developing methods and devices for making arrays of biomolecules, in which the apparatus is less complicated and more automated and the methods reduce waste of biological material that may be in limited supply, and which result in efficient and reproducible rapid production of more versatile and reliable arrays.
Inkjet printing devices have been modified and used to dispense biochemical agents such as proteins and nucleic acids but have not been able to achieve a spatial density of liquid samples at the inkjet head comparable to the spatial density of ink ejection orifices on the head itself. Thus, even though the orifices on an inkjet head may be spaced less than 100 micrometers (&mgr;m) apart from one another, the spacing of different liquid samples feeding such a head has not been reduced to less than millimeters (mm).
Recent art taught in international patent application WO9955461(A1) discloses a redrawn capillary imaging reservoir which may be used for pin-printing of liquid samples onto a microarray and which also may be used in transferring liquid samples between microtiter plates of different well density. However, the art taught in that patent application results in relatively large volumes of liquid required to fill the capillary system taught therein. Since the liquid samples used for microarray fabrication are often scarce and expensive, the requirement for large filling volumes can create problems is practicing that art.
Thus there still exists a need for a droplet deposition system which is fed from hundred of different reservoirs, which can deposit hundreds of different fluids in the form of drop-on-demand droplets onto substrates for purposes such as microarray fabrication, and
DISCLOSURE OF THE INVENTION
The present invention provides a fluid handling system, and a method of manufacture therefor, having a flexible manifold including two layers of flexible material laminated together. The flexible manifold has provided therein a capillary, a capillary inlet hole fluidically connected to the capillary, and a capillary outlet hole fluidically connected to the capillary. A peripheral rim is attached to the flexible manifold and exerts tensile stress on the flexible manifold to provide dimensional stability to the flexible manifold.
The present invention further provides a fluid handling system allowing hundreds of different liquids to supply an edge-fed, drop-on-demand, face-shooting, thermally-actuated “deposition chip” from a supply region comprising hundreds of reservoirs wherein each reservoir has a volume on the order of microliters. The deposition chip is a modified silicon inkjet chip placed upon a stretched microfluidic structure called a “format compression manifold” (FCM). The FCM contains hundreds of capillaries, orifices, and feedthrough holes which allow fluidic transfer of hundreds of different liquid samples from the format spacing of several millimeters, as typically used in microtiter plates, to a format spacing of tens of micrometers, as typically used in inkjet orifices originally developed for printing with ink on paper. The deposition chip then spits each of the hundreds of different liquids as individual droplets with a volume on the order of picoliters, in a drop-on-demand mode, onto substrates such as glass plates. Such plates can comprise microarrays such as DNA microarrays or protein microarrays which can contain thousands of different spots of thousands of different biological samples. The FCM is provided with dimensional stability by being stretched like a drumhead on a rigid frame called the “rim.”
An additional plate known as a microtiter manifold (MTM) is adhesively bonded over inlet holes at the ends of the FCM capillaries distal from the deposition chip. The MTM contains hundreds of liquid reservoirs laterally spaced on centers of several millimeters, with each reservoir being in fluid communication with one capillary of the FCM. In variations of this embodiment, multiple MTMs may be bonded onto the FCM and multiple deposition chips may be bonded onto the FCM.
In a second embodiment of the present invention the MTM and the rim form one contiguous body which is adhesively bonded to the openings of the FCM capillaries distal from the deposition chip, which contiguous body contains the hundreds of liquid reservoirs, and which acts to keep the FCM stretched for dimensional stability. In a third embodiment of the present invention a separate microtiter plate is mechanically clamped in place to align it to inlet holes of the FCM capillaries distal from the deposition chip, such that each reservoir of the microtiter plate is in fluid communication with one capillary of the FCM. Gasketing between the microtiter plate and the FCM prevents cross-leakage between the reservoirs of the microtiter plate. In variations of this embodiment, multiple microtiter plates may be clamped onto the FCM, and multiple deposition chips may be bonded onto the FCM.
An advantage of the present invention is that it takes separate fluid samples, which are initially loaded into reservoirs, which are laterally spaced several millimeters apart, and decreases the spacing between the separate samples to tens of micrometers before the samples are spit onto substrates where the desired spacing between samples is also tens of micrometers. This decrease in spacing is called “format compression”, and is expressed in a figure of merit called the format compression ratio (FCR). For example, in one embodiment of the invention the lateral spacing between samples when loaded into reservoirs is 2.25 mm

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fluid handling system and method of manufacture does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fluid handling system and method of manufacture, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fluid handling system and method of manufacture will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2879392

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.