Method and apparatus for improving the probability of...

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06415179

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates generally to implantable defibrillators and more particularly to a method and apparatus for providing more efficient ventricular defibrillation shocks.
Cardiac arrhythmias can generally be thought of as disturbances of the normal rhythm of the heart muscle. Cardiac arrhythmias are broadly divided into two major categories, bradyarrhythmia and tachyarrhythmia. Tachyarrhythmia can be broadly defined as an abnormally rapid heart (e.g., over 100 beats/minute, at rest), and bradyarrhythmia can be broadly defined as an abnormally slow heart (e.g., less than 50 beats/minute). Tachyarrhythmias are further subdivided into two major sub-categories, namely, tachycardia and fibrillation. Tachycardia is a condition in which the electrical activity and rhythms of the heart are rapid, but organized. Fibrillation is a condition in which the electrical activity and rhythm of the heart are rapid, chaotic, and disorganized. Tachycardia and fibrillation are further classified according to their location within the heart, namely, either atrial or ventricular. In general, atrial arrhythmias are non-life threatening, chronic conditions, because the atria (upper chambers of the heart) are only responsible for aiding the movement of blood into the ventricles (lower chambers of the heart), whereas ventricular arrhythmias are life-threatening, acute events, because the heart's ability to pump blood to the rest of the body is impaired if the ventricles become arrhythmic. This invention is particularly concerned with treatment of ventricular fibrillation.
Since an individual who experiences fibrillation typically will not always be immediately accessible by emergency care technicians and their equipment, and/or will become incapacitated and unable to beckon such care, implantable cardiac stimulation devices have become critical delivery systems of emergency care for many patients with chronic heart failure problems.
Various types of implantable cardiac stimulation devices are presently available and used for delivering various types of cardiac stimulation therapy in the treatment of cardiac arrhythmias. The two most common types which are in widespread use are pacemakers and implantable cardioverter defibrillators (ICDs).
Pacemakers generally produce relatively low voltage pacing pulses which are delivered to the patient's heart through low voltage, bipolar pacing leads, generally across spaced apart ring and tip electrodes thereof which are of opposite polarity. These pacing pulses assist the natural pacing function of the heart in order to prevent bradycardia.
On the other hand, ICDs are sophisticated medical devices which are surgically implanted (abdominally or pectorally) in a patient to monitor the cardiac activity of the patient's heart, and to deliver electrical stimulation as required to correct cardiac arrhythmias which occur due to disturbances in the normal pattern of electrical conduction within the heart muscle. In general, an ICD continuously monitors the heart activity of the patient in whom the device is implanted by analyzing electrical signals, known as electrograms (EGMs), detected by sensing electrodes positioned in the patient's heart. More particularly, contemporary ICDs include waveform digitization circuitry which digitizes the analog EGM produced by the sensing electrodes, and a microprocessor and associated peripheral integrated circuits (ICs) which analyze the digitized EGM in accordance with a diagnostic algorithm implemented by software stored in the microprocessor. Contemporary ICDs are generally capable of diagnosing the various types of cardiac arrhythmias discussed above, and then delivering the appropriate electrical stimulation/therapy to the patient's heart, in accordance with a therapy delivery algorithm also implemented in software stored in the microprocessor, to thereby correct or terminate the diagnosed arrhythmias. Typical electrical stimulus delivery means used in ICDs involve an energy storage device, e.g., a capacitor, connected to a shock delivering electrode or electrodes. Contemporary ICDs are capable of delivering various types or levels of electrical therapy. U.S. Pat. No. 5,545,189 provides a representative background discussion of these and other details of conventional ICDs, and the disclosure of this patent is herein incorporated by reference.
One conventional method of electrical shock therapy for treating ventricular arrhythmia is to deliver a single burst of a relatively large amount of electrical current through the fibrillating heart of a patient by an ICD supported-electrode configuration installed in or about the patient's heart. For a given ventricular fibrillation episode, the minimum amount of energy required to defibrillate a patient's ventricle is known as the ventricular defibrillation threshold (VDFT). However, in the treatment of an acute cardiac condition, such as ventricular fibrillation, conventional ICD-based therapies have encountered a dilemma in that while higher strength defibrillation shocks generally have a higher probability of success of achieving defibrillation than lower strength shocks, the countervailing consideration is that higher energy shocks demand commensurately greater ICD equipment capabilities and cost, such as in terms of batteries, capacitors, and so forth.
It has been experimentally observed that the likelihood of successful defibrillation has been shown to follow a sigmoidal shaped curve in which higher strength shocks have a higher probability of success than lower strength shocks. See, e.g., Davy J., et al., “The relationship between successful defibrillation and delivered energy in open-chest dogs: reappraisal of the “defibrillation threshold” concept,”
Am Heart J
. 1987; 113:77-84. When a number of shocks are applied at the V50 level, 50% of applied shocks are expected to result in successful defibrillation. In order to interpret the increased probability of success in terms of percentage improvement in DFT, some previously published data is available to illuminate the issue. For a superior vena cava (SVC) lead and right ventricle (RV) lead configuration, for example, the probability of success curves have been developed to determine that (V80−V50)/V50=0.14. E.g., see Souza et al., “Comparison of upper limit of vulnerability and defibrillation probability of success curves using a nonthoracotomy lead system,”
Circulation
, 1995, 91:1247-1252. By linear approximation of the central portion of the sigmoidal curve, this yields (V70−V50)/V50=0.09. This equation indicates that if the probability of success in achieving defibrillation at a certain voltage is 50%, then increasing the voltage by 9% will increase the probability of success to 70%.
Yet, the ICD device preferably should be designed to be as small in dimensions and light in mass as possible so as to be less cumbersome and bulky to the patient, so it generally will not be practical to significantly scale-up the power and voltage capabilities of an ICD device in many cases as the mode of increasing the probability of success in the delivery of defibrillation therapy.
Instead, it would be desirable to find ways to lower the VDFT for a given ICD size and power. Furthermore, a patient having an installed ICD may experience several or more acute separate fibrillation episodes a year requiring intervention by the installed ICD unit. Thus, it can be appreciated how lowering of the energy requirements demanded of the ICD would be desirable so as to prevent premature depletion of the batteries, and thereby increase the service life of the ICD device.
Also, while a patient experiencing a ventricular fibrillation episode, may or may not be conscious or semi-conscious, it is still possible that the patient could potentially perceive any programmed electrical stimulation treatment being performed on his/her heart during the episode. Thus, to mitigate any possible further trauma to the patient on account of any negative perceptions of the electrical j

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for improving the probability of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for improving the probability of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for improving the probability of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2879107

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.