Method of and devices for telecommunications

Pulse or digital communications – Cable systems and components

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06381284

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to telecommunications and can be used in single and multi-span simplex and (half-) duplex analog and digital systems of local and long distance communication through coaxial and symmetrical physical pairs of metallic wires, fiber optics and metallic waveguides and other cables for transmission of data, telephone. television, internet, and other coded/modulated/any signals.
A method of simplex and/or (half-) duplex electrical communication through coaxial and symmetrical pairs of metallic wires, fiber optics and metallic waveguides and other cables, in the spans of which the echo-reflections of signals is suppressed at the ends of the pair/waveguide/cable is universally known and world-wide accepted (CCITT recommendations G332, e), and G333, e); and also CCIM recommendation 567-2, XVI Plenary Assembly, V12, Jeneve, 1986). For this purpose the output/input resistance of the connected with them equipment is formed equal to their rated wave resistance.
There are known devices for telecommunication realizing a well known method, which during the transmission the signal is compressed in frequency spectra, converted/(re-)coded in time and/or level/amplitude, frequency, phase and/or various types of modulation/manipulation, (pre-) equalization, etc., are introduced, for example in Digital Subscriber Loop Technologies A, H, S, V, or XDSL, etc. (ATG'ss Communications and Networking Technology Guide series copyright 1997 by the applied technology group, and the DSL Source Book, Plane Answers About Digital Subscriber Line Opportunities, winner of 1997 Excellence Award, Society of Technical Communication (STC). Second Edition, copyright 1998, Paradyne Corporation). This method performs more efficiently or more complete a range of amplitude characteristic, protection from interferences
oises bandwidth, energy and other possibilities of existing devices for telecommunication, and as a result their carrying capacity, transmission distance/span length, volume of services, profitability, etc., are increased.
However, in the devices of all known systems of telecommunication, during suppression of signal reflections at the end of the pair/waveguide/cable, energy and protection from interferences
oises of signal are uselessly wasted at each span, and additional system distortions are introduced. Losses are so great that when they are bringing into use, either the above listed processing of the signal is not needed, or it will be several times more efficient.
Devices for telecommunication through coaxial and symmetrical pairs of metallic wires are generally known, in which, the spans at the end of the pair connected to the output of the transmitter and/or input of the receiver signal formed as a current generator and/or a voltage amplifier, a matching resistor which is equal to a rated wave resistance of the pair is connected parallel to the pair, and at the output of the transmitter and/or input of the receiver formed as a voltage generator and/or a current amplifier, a matching resistor is connected in series to the pair, (CHU-SUN YEN, CRAWFORT R. D. Distribution and Equalization of signal on coaxial cables used in 10 Mbit/s baseband local area networks./IEE Trans.-1983.-V.com-31, N 10,-P.1181-1186).
In the devices of existing well-known systems of telecommunication through coaxial and symmetrical pairs of metallic wires, at the each end of each physical pair on matching resistors signal energy is uselessly wasted for suppression of echo of signals from the ends of the pair at the end of the pair in over necessary and sufficient for transmission with practically ideal accuracy (0.01-0.001). At the resistor which matches the heat of the pair, in spans of existing and generally known devices of systems telecommunication, half signal energy is uselessly wasted during transmitting. Only in a particular case by attenuation of the pair up to 10-15 dB at an average during the transmitting {fraction (1/10)}th part of energy is uselessly lost. At the resistor which matches the pair end, by pair attenuation over 20-30 dB during the receiving, all signal energy is uselessly lost and only in a particular case during attenuation 10-30 dB a part of energy is lost. As a result, at the end of each physical pair of each span, the received signal is uselessly weakened 1-2 times by attenuation pair up to 10-15 dB, 2-4 times by attenuation 10-30 dB and 4 times by attenuation 20-30 dB, and how much greater. Accordingly, the efficiency of signal energy is reduced at each span 1-4 times, 4-16 times, and 16 times, the received signal is additionally distorted and reduced and the protection of signal from noises/interferences/influences is lowered, while the pair itself has attenuation which is not of less but only a known attenuation. Even greater energy is lost at each span in a transmitting equipment for realization of its practical zero or infinite output resistance formed as voltage/current generator of signal for uselessly stable suppression of echo from the ends of pair in a transmitting equipment by its matching resistor, above a practically necessary and sufficient one.
The known devices for telecommunication through fiber optics and metallic waveguides and other cables possess the same disadvantages. As a result, by any given frequency band and transmission distance the universally known existing world-wide accepted systems of telecommunication are excessively expensive and complicated. They need a great quantity of equipment, number of spans and repeater/regenerative stations. For increase of frequency band, transmission speed, carrying capacity and/or transmission distance/span length, it is necessary to provide very expensive and/or lengthy laying of new lines and/or replacement of existing wires/waveguides/cables, equipment and places of its mounting. This makes the systems and networks of transmission more complicated, prevents its development and requires a lot of time.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to increase a frequency band, transmission speed, carrying capacity and/or span length, and/or reduction of cable section, a quantity of equipment and a number of spans and/or simplification and cost reduction of them and the telecommunication by release/bring into use of a hidden signal energy which is useless lost now, by weakening of it inside the spans of attenuation and distortion of connected existing pair/waveguide/cable and/or conversion of it into additional amplification, equalization and interference
oise immunity/protection of the signal.
In keeping with these objects and with others which will become apparent hereinafter, separately in each span at any or at both end/s of the pair/waveguide/cable, the signal is full reflected, and for this purpose in the spans with coaxial or symmetrical pair of metallic wires at any given or in any combination at both end/s of the pair a mode of idle running is introduced, and the equipment connected to the pair is formed as a current generator and/or voltage amplifier. Or a mode of short-circuit is introduced, and the equipment connected to the pair is formed as a voltage generator and/or current amplifier. Analogously, in the span/s with fiber optics or metallic waveguides, or other cables, the signal is full reflected at any or both ends, and with reduction of frequency during suppression of introduced echo from the ends of the pair/waveguides/cable along them between their ends, with its attenuation insufficient for transmission of the required/rated accuracy/error ratio, at these frequencies at the same ends by the pair/waveguide/cable of the same spans the introduced full reflection is replaced by a partial reflection. In each span separately the output/input resistance of the equipment connected with them is changed in direction of its wave resistance so as to weaken the echo introduced at any/both ends of the pair/waveguide/cable in over to weakening of the introduced echo along them between their ends of their attenuation, so as to provide

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of and devices for telecommunications does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of and devices for telecommunications, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of and devices for telecommunications will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2879011

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.