Interrogation of an implantable medical device using...

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06370433

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to improved methods and apparatus for providing transmission of implantable medical device (IMD) information during interrogation of the IMD via broadcast radio signals that can be received and reproduced as human understandable voiced statements or other audible sounds.
BACKGROUND OF THE INVENTION
Early IMDs such as implantable cardiac pacemakers were designed to operate in a typically single operating mode governed by fixed operating parameters without any ability to change the operating mode or otherwise communicate percutaneously with external equipment. In time, it became apparent that it would be clinically desirable to vary certain of the operating parameters and/or modes of operation. An initial approach employed with implanted cardiac pacemakers involved use of miniature rheostats that could be directly accessed by a needle-like tool inserted through the patients skin to adjust a resistance in the pacing rate or pulse width setting circuit. Later, miniaturized reed switches were incorporated into the pacing rate or pulse width circuits that responded to magnetic fields applied through the skin by an external magnet placed over the implant site. The pulse width, pacing rate and a limited number of pacing modes could be adjusted in this manner.
It was also realized that the operation of an implantable cardiac pacemaker could be observed, for example, by use of a standard EKG machine and timing of intervals between pacing pulse spikes in the ECG tracing recorded from skin electrodes on the patient. The applied magnet was used to close a reed switch to change the pacing mode to an asynchronous pacing mode and to encode the fixed pacing rate or pulse amplitude or width to a value reflecting a current operating parameter. One use of this technique was to monitor impending battery depletion through observation of a change in the pacing rate from a preset or programmed pacing rate in response to a battery voltage drop, as described, for example, in U.S. Pat. No. 4,445,512. This approach could only provide a low bandpass data channel, of course, to avoid interfering with the primary function of pacing the patient's heart when necessary.
Moreover, pacing pulses conducted through elongated pacing lead conductors caused electromagnetic signals that could be heard as noise impulses on AM radio bands when a radio antenna was held over the implanted lead. In this way, the delivery of pacing pulses could be confirmed without an EKG machine, and a rough determination of the pacing rate could be made by stop watch timing successive noise impulses. An output circuit inductor was incorporated into certain pacemaker models that was caused to “ring” when a pacing pulse was delivered for the duration of the pacing pulse. The duration of the noise impulse picked up by the radio was proportional to the pacing pulse width, and it was at least theoretically possible to measure the pacing pulse width from the duration of the noise impulse.
As digital circuit technology advanced, it was recognized that control of operating modes and parameters of implanted medical devices could be realized in digital or binary circuits employing memorized control states or operating parameter values. In order to change an operating mode or parameter value, “programmers” were developed based on radio frequency (RF) downlink data communication from an external programmer transceiver to a telemetry transceiver and memory incorporated within the IMD.
Through the use of such telemetry systems, it became possible to provide uplink data telemetry to transmit the contents of a register or memory within the IMD to the telemetry receiver within the programmer employing the same RF transmission capabilities. Today, both analog and digital data can be transmitted by uplink RF telemetry from the implanted medical device to the external programmer. In the context of implantable cardiac pacemakers, the analog data typically includes battery status, sampled intracardiac electrocardiogram amplitude values, sensor output signals, pacing pulse amplitude, energy, and pulse width, and pacing lead impedance. The digital data typically includes statistics related to performance, event markers, current values of programmable parameters, implant data, and patient and IMD identification codes.
The telemetry transmission system that evolved into current common use relies upon the generation of low amplitude magnetic fields by current oscillating in an LC circuit of an RF telemetry antenna in a transmitting mode and the sensing of currents induced a closely spaced RF telemetry antenna in a receiving mode. Short duration bursts of the carrier frequency are transmitted in a variety of telemetry transmission formats. In the MEDTRONIC® product line, the RF carrier frequency is set at 175 KHz, and the RF telemetry antenna of the IMD is typically coiled wire wound about a ferrite core that is located within the hermetically sealed enclosure. The RF telemetry antenna of the external programmer is contained in a programming head together with a permanent magnet that can be placed on the patient's skin over the IMD to establish a magnetic field within the hermetically sealed enclosure of the IMD.
In an uplink telemetry transmission from an implanted medical device, it is desirable to limit the current drain from the implanted battery as much as possible simply to prolong device longevity. However, as device operating and monitoring capabilities multiply, it is desirable to be able to transmit out ever increasing volumes of data in real time or in as short a transmission time as possible with high reliability and immunity to spurious noise. As a result of these considerations, many RF telemetry transmission data encoding schemes have been proposed or currently are used that attempt to increase the data transmission rate.
At present, a wide variety of IMDs are commercially released or proposed for clinical implantation that are programmable in a variety of operating modes and are interrogatable using RF telemetry transmissions. Such medical devices include implantable cardiac pacemakers, cardioverter/defibrillators, pacemaker/cardioverter/defibrillators, drug delivery systems, cardiomyostimulators, cardiac and other physiologic monitors, electrical stimulators including nerve and muscle stimulators, deep brain stimulators, and cochlear implants, and heart assist devices or pumps, etc. As the technology advances, IMDs become ever more complex in possible programmable operating modes, menus of available operating parameters, and capabilities of monitoring increasing varieties of physiologic conditions and electrical signals. These complexities place ever increasing demands on the programming and interrogation system and the medical care providers using them.
In our Statutory Invention Registration H1347, we disclose an improvement to programmers of this type adding audio voiced statements that accompany their operations to assist the medical care provider using them. For example, we propose adding voiced statements that track interactive operation of a programmer and implanted medical device during programming and patient follow-up sessions that can be heard by the medical care provider using the programmer. Such voiced statements would augment or replace the visual display of such information or minimal audible tones (e.g., beeps) that are displayed or emitted in use of the external programmer or pacing system analyzer.
Other approaches than reliance upon RF telemetry transmissions have also been developed for providing real time warnings to the patient that the IMD is malfunctioning or is about to deliver a therapy in response to a detected need.
Audible beeping alarms have been proposed to be incorporated into the IMD to warn the patient of battery depletion as disclosed for example in U.S. Pat. Nos. 4,345,603 and 4,488,555, incorporated herein by reference. Similarly, the application of low energy stimulation to electrodes on or near the IMD to “tingle” the patient upon batter

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Interrogation of an implantable medical device using... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Interrogation of an implantable medical device using..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Interrogation of an implantable medical device using... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2876501

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.