Preparation of water soluble polymer dispersions from...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S812000

Reexamination Certificate

active

06426383

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a novel process for the production of a water soluble polymer dispersion from vinylamide monomers, and, more particularly, polymers formed from N-vinylformamide monomers.
BACKGROUND OF THE INVENTION
One of the problems that has confronted industry in the use of water soluble polymer flocculants is how to dissolve the polymer into water so that it can be utilized for its intended purpose. Early water soluble polymers were provided as dilute aqueous solutions. As the technology improved, and the molecular weights of the polymers were improved, it became increasingly difficult for manufacturers to ship these polymers in solution form because of the high viscosity of even one-half to one percent solutions of the polymers. Manufacturers accordingly started shipping the polymers in the form of commutated solids which could be dissolved into water using various mechanical means. While solving shipment problems, some mechanical means degraded the polymers through shear, and, incomplete dissolution of water soluble polymers, the formation of swollen translucent particles, was common, This led to a waste of polymer, and in some cases, detrimental results such as in the case of so called “fish-eye” particles which caused defects in the manufacture of paper. In the early 1970's water-in-oil emulsions of water soluble polymers were introduced. Using the water-in-oil technology, high molecular weight polymers that rapidly dissolved could be produced, and this technology achieved great acceptance in the water soluble polymer industry. A disadvantage of the water-in-oil emulsion polymer technology however is that the emulsions contain substantial quantities of hydrocarbon liquid. The introduction of hydrocarbon liquids into the systems where these water soluble polymers are used is not always beneficial.
U.S. Pat. Nos. 4,929,655 and 5,006,590 issued to Kyoritsu Yuki Co. Ltd. describe and claim a method for the production of dispersions of water soluble cationic polymers. These polymers were manufactured in an aqueous salt or brine solution in which the polymer was insoluble. The disclosure of these two patents is hereinafter incorporated by reference into this specification. The process yielded dispersions of high molecular weight polymers which when added to water would completely dissolve over a relatively short period of time. While an advance to the art, the invention was practical only for preparing water soluble polymer dispersions containing a hydrophobically modified cationic monomer. Of course, anionic polymers which include such functionality cannot be prepared without detracting from the performance of the resultant polymer which is based on the anionic character of the polymer.
U.S. Pat. No. 5,605,970 (hereby incorporated by reference), discloses and claims a method for the manufacture of a particular anionic water soluble polymer in dispersion form. This disclosure teaches that certain anionic polymers, incorporating hydrophobically modified monomers, can be prepared using dispersion polymer methods. The application specifically teaches the manufacture of acrylic acid-ethylhexylacrylate polymers. The ethylhexylacrylate monomer adds a hydrophobic character to the polymer, causing the polymer to become insoluble in certain brine solutions. While these polymers, and the methods for their manufacture are useful, the incorporation of a hydrophobic monomer into a water soluble polymer, where water solubility is desirable is not always advantageous in the final use of the polymer.
In the process of dispersion polymerization, the monomer and the initiator are both soluble in the polymerization medium, but the medium is a poor solvent for the resulting polymer. Accordingly, the reaction mixture is homogeneous at the onset, and the polymerization is initiated in a homogeneous solution. Depending on the solvency of the medium for the resulting oligomers or macroradicals and macromolecules, phase separation occurs at an early stage. This leads to nucleation and the formation of primary particles called “precursors” and the precursors are colloidally stabilized by adsorption of stabilizers. The particles are believed to be swollen by the polymerization medium and/or the monomer, leading to the formation of particles having a size in the region of ~0.1-10.0 microns.
In any dispersion polymerization, the variables that are usually controlled are the concentrations of the stabilizer, the monomer and the initiator, solvency of the dispersion medium, and the reaction temperature. It has been found that these variables can have a significant effect on the particle size, the molecular weight of the final polymer particles, and the kinetics of the polymerization process.
Particles produced by dispersion polymerization in the absence of any stabilizer are not sufficiently stable and may coagulate after their formation. Addition of a small percentage of a suitable stabilizer to the polymerization mixture produces stable dispersion particles. Particle stabilization in dispersion polymerization is usually referred to as “steric stabilization”. Good stabilizers for dispersion polymerization are polymer or oligomer compounds with low solubility in the polymerization medium and moderate affinity for the polymer particles.
As the stabilizer concentration is increased, the particle size decreases, which implies that the number of nuclei formed increases with increasing stabilizer concentration. The coagulation nucleation theory very well accounts for the observed dependence of the particle size on stabilizer concentration, since the greater the concentration of the stabilizer adsorbed the slower will be the coagulation step. This results in more precursors becoming mature particles, thus reducing the size of particles produced.
Dispersion polymers have utility as additives in various water treatment applications as taught by U.S. Pat. Nos. 5,330,650, 5,332,507 and 5,435,922 for example. Furthermore, Japanese Unexamined Patent Publication No. 8-188699 describes an aqueous dispersion composition of a cationic polymer comprising amine or amidine, inorganic salt, nonionic or cationic surface active agent and water. Copolymers formed from the polymerization of various monomers with vinylamine have been described as additives for various water treatment applications such deinking process waters in U.S. Pat. No. 5,573,675, dewatering coal tailings in U.S. Pat. No. 5,529,588, color removal for pulp and paper applications in U.S. Pat. No. 5,476,594, and coal refuse thickening in U.S. Pat. No. 5,441,649.
The polymers described herein will be equally as effective in similar applications.
SUMMARY OF THE INVENTION
The present invention relates to a novel process for the production of a water soluble polymer dispersion from vinylamide monomers, and, more particularly, polymers formed from N-vinylformamide monomers.
DESCRIPTION OF THE INVENTION
One aspect of this invention is an aqueous dispersion comprising discrete particles of a water-soluble, non-ionic poly(N-vinylamide) polymer formed by the polymerization of an N-vinylamide monomer of the following formula:
H
2
C=CR
2
NRC(O)R
1
wherein R, R
1
and R
2
are each selected from the group consisting of hydrogen, C
1
-C
20
alkyl groups, aryl groups and alkylaryl groups. Furthermore, said N-vinylamide monomer may be selected from the group consisting of N-vinyl formamide, N-methyl-N-vinylacetamide and N-vinyl acetamide.
Another aspect of the invention is a water-soluble non-ionic dispersion comprising:
discrete particles of a water-soluble, non-ionic poly(N-vinylamide) polymer formed by the polymerization of a vinylamide monomer of the formula
 H
2
C=CR
2
NRC(O)R
1
 wherein R, R
1
and R
2
are each selected from the group consisting of hydrogen, C
1
-C
20
alkyl groups, aryl groups and alkylaryl groups dispersed in an aqueous salt solution, wherein said salt in the salt solution is selected from the group consisting of ammonium, alkali metal and alkaline earth metal halides, sulfates, ph

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Preparation of water soluble polymer dispersions from... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Preparation of water soluble polymer dispersions from..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Preparation of water soluble polymer dispersions from... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2875550

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.