Controlled release liquid active agent formulation dosage forms

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Tablets – lozenges – or pills

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S472000, C424S468000

Reexamination Certificate

active

06342249

ABSTRACT:

FIELD OF THE INVENTION
This invention pertains to the controlled delivery of pharmaceutical agents and dosage forms therefor. In particular, the invention is directed to improved methods, dosage forms and devices for the controlled delivery of liquid active agent formulations to an environment of use.
BACKGROUND OF THE INVENTION
Administration of liquid, active agent formulations is often preferred over solid active agent formulations in order to facilitate absorption of the active agent and obtain a beneficial effect for the intended use in the shortest possible time after the formulation is exposed to the environment of use. Examples of prior art devices to deliver liquid, active agent formulations are soft gelatin capsules that contain a liquid active agent formulation or liquid formulations of the active agent that are bottled and dispensed in measured dosage amounts by the spoonful, or the like. Those systems are not generally amenable to controlled delivery of the active agent over time. While it is desired to have the active agent exhibit its effect as soon as it is released to the environment of use, it also often is desirable to have controlled release of the active agent to the environment of use over time. Such controlled release may be sustained delivery over time, such as zero order, or patterned delivery, such as pulsatile for example. Prior art systems have not generally been suitable for such delivery.
Various devices and methods have been described for the continuous delivery of active agents over time. Typically, such prior art systems have been used to deliver active agents initially in the dry state prior to administration. For example, U.S. Pat. Nos. 4,892,778 and 4,940,465, which are incorporated herein by reference, describe dispensers for delivering a beneficial agent to an environment of use that include a semipermeable wall defining a compartment containing a layer of expandable material that pushes a drug layer out of the compartment formed by the wall. The exit orifice in the device is substantially the same diameter as the inner diameter of the compartment formed by the wall.
U.S. Pat. No. 4,915,949, which is incorporated herein by reference, describes a dispenser for delivering a beneficial agent to an environment of use that includes a semipermeable wall containing a layer of expandable material that pushes a drug layer out of the compartment formed by the wall. The drug layer contains discrete tiny pills dispersed in a carrier. The exit orifice in the device is substantially the same diameter as the inner diameter of the compartment formed by the wall.
U.S. Pat. No. 5,126,142, which is incorporated herein by reference, describes a device for delivering an ionophore to livestock that includes a semipermeable housing in which a composition containing the ionophore and a carrier and an expandable hydrophilic layer is located, along with an additional element that imparts sufficient density to the device to retain it in the rumen-reticular sac of a ruminant animal, The ionophore and carrier are present in a dry state during storage and the composition changes to a dispensable, fluid-like state when it is in contact with the fluid environment of use. A number of different exit arrangements are described, including a plurality of holes in the end of the device and a single exit of varying diameter to control the amount of drug released per unit time due to diffusion and osmotic pumping.
It is often preferable that a large orifice, from about 50%-100% of the inner diameter of the drug compartment, be provided in the dispensing device containing the active agent and a bioerodible or degradable active agent carrier. When exposed to the environment of use, drug is released from the drug layer by erosion and diffusion. In those cases where the drug is present in the solid state, the realization of the beneficial effect is delayed until the drug is dissolved in the fluids of the environment of use and absorbed by the tissues or mucosal environment of the gastrointestinal tract. Such delay often is not tolerable. Also, for drugs that are poorly soluble in gastric or intestinal fluids, the delay may be further exacerbated.
Devices in which the drug composition initially is dry but in the environment of use is delivered as a slurry, suspension or solution from a small exit orifice by the action of an expandable layer are described in U.S. Pat. Nos. 5,660,861, 5,633,011; 5,190,765; 5,252,338; 5,620,705; 4,931,285; 5,006,346; 5,024,842; and 5,160,743. Typical devices include an expandable push layer and a drug layer surrounded by a semipermeable membrane.
When the active agent is insoluble or poorly soluble, prior art systems may not provide rapid delivery of active agent or concentration gradients at the site of absorption that facilitate absorption through the gastrointestinal tract. Various approaches have been put forth to address such problems, including the use of water-soluble salts, self-emulsifying compositions, polymorphic forms, powdered solutions, molecular complexes, micronization, eutectics, and solid solutions. An example of the use of a powdered solution is described by Sheth, et al., in “Use of Powdered Solutions to Improve the Dissolution Rate of Polythiazide Tablets,” Drug Development and Industrial Pharmacy, 16(5), 769-777 (1990). References to certain of the other approaches are cited therein. Additional examples of powdered solutions are described in U.S. Pat. No. 5,800,834. The patent describes methodology for calculating the amount of liquid that may be optimally sorbed into materials to prevent the drug solution from being exuded from the granular composition during compression.
U.S. Pat. No. 5,486,365, which is incorporated herein by reference, describes a spheronized material formed from a scale-like calcium hydrogen phosphate particulate material having a high specific surface area, good compressibility and low friability. That patent indicates that the material has the characteristic of high liquid absorption. However, the patent does not suggest that the material may be used as a carrier for delivery of a liquid medicament formulation to the environment of use. Instead, the patent describes the formation of a dried formulation, such as formed by spray drying. The patent describes the use of a suspension containing medicines and binders during the spray-drying granulation process to form a spherical particle containing the medicine. As an example, ascorbic acid in an amount equivalent to 10% of the scale-like calcium hydrogen phosphate was dissolved into a slurry of 20 weight percent of calcium hydrogen phosphate in water, and the resulting slurry was spray dried to form dried, spherical calcium hydrogen phosphate containing ascorbic acid. That material was then tableted under loads of 500-2000 kg/cm
2
.
SUMMARY OF THE INVENTION
It has been surprisingly discovered that certain absorbent materials having prescribed physical characteristics, as exemplified by, for example, particular porous calcium hydrogen phosphate powders described in U.S. Pat. No. 5,486,365, sold under the trademark FujiCalin®, and magnesium aluminometasilicate powders, sold under the trademark Neusilin™ (Fuji Chemical Industries (U.S.A.) Inc., Robbinsville, N.J.), may be used to prepare dosage forms in which liquid, active agent formulations may be sorbed into the interior pores of the aforementioned materials in significant amounts and delivered to the site of administration in the liquid state. It has further been surprisingly discovered that such types of porous particles with liquid, active agent formulations sorbed into the particles may be fabricated into controlled release dosage forms without exuding the liquid, active agent formulation out of the particles during the manufacturing process. That discovery has permitted the fabrication of controlled release dosage forms that provided for the delivery of the active agent to the delivery site in the liquid state, thus providing minimal delay in the onset of the desired beneficial effect of the active agent,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Controlled release liquid active agent formulation dosage forms does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Controlled release liquid active agent formulation dosage forms, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Controlled release liquid active agent formulation dosage forms will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2875023

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.