Thymidine kinase mutants

Chemistry: molecular biology and microbiology – Enzyme – proenzyme; compositions thereof; process for... – Transferase other than ribonuclease

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S183000, C435S193000

Reexamination Certificate

active

06451571

ABSTRACT:

TECHNICAL FIELD
The present invention relates generally to mutant enzymes of the Herpesviridae and, more specifically, to compositions and methods which utilize thymidine kinase mutants.
BACKGROUND OF THE INVENTION
Although many bacterial diseases are, in general, easily treated with antibiotics, very few effective treatments exist for many viral, parasitic, cancerous, and genetic diseases. Cancer, for example, may be treated by surgical resection of a solid tumor. Nevertheless, a majority of patients with solid tumors also possess micrometastases beyond the primary tumor site. If treated with surgery alone, approximately 70% of these patients will experience recurrence of the cancer. Thus, cancer accounts for one-fifth of the total mortality in the United States, and is the second leading cause of death.
In addition to surgery, many cancers are now also treated with a combination of therapies involving cytotoxic chemotherapeutic drugs (e.g., vincristine, vinblastine, cisplatin, methotrexate, 5-FU, etc.) and/or radiation therapy. One difficulty with this approach, however, is that radiotherapeutic and chemotherapeutic agents are toxic to normal tissues, and often create life-threatening side effects. In addition, these approaches often have extremely high failure/remission rates (up to 90% depending upon the type of cancer).
Numerous other methods have been attempted in order to bolster or augment an individual's own immune system in order to eliminate cancer cells. For example, some scientists have utilized bacterial or viral components as adjuvants, in order to stimulate the immune system to destroy tumor cells. Such agents have generally been useful as adjuvants and as nonspecific stimulants in animal tumor models, but have not yet proved to be generally effective in humans.
Lymphokines have also been utilized in the treatment of cancer (as well as viral and parasitic diseases), in order to stimulate or affect specific immune cells in the generation of an immune response. One group, for example, utilized the lymphokine Interleukin-2 in order to stimulate peripheral blood cells in order to expand and produce large quantities of cells which are cytotoxic to tumor cells (Rosenberg et al.,
N. Engl. J. Med.
313:1485-1492, 1985).
Others have suggested the use of antibody-mediated treatment using specific monoclonal antibodies or “magic bullets” in order to specifically target and kill tumor cells (Dillman, “Antibody Therapy,” Principles of Cancer Biotherapy, Oldham (ed.), Raven Press, Ltd., New York, 1987). One difficulty, however, is that most monoclonal antibodies are of murine origin, and thus hypersensitivity against the murine antibody may limit its efficacy, particularly after repeated therapies. Common side effects include fever, sweats and chills, skin rashes, arthritis, and nerve palsies.
One approach which has recently garnered significant interest is the use of gene therapy, which has been utilized to treat not only genetic diseases, but viral and cancerous diseases as well (see PCT Publication Nos. WO 91/02805, EPO 415,731, and WO 90/07936). Briefly, specifically designed vectors which have been derived from viruses are used to deliver particular genetic information into cells. Such genetic information may itself be useful to block expression of damaging proteins or antigens (e.g., antisense therapy), may encode proteins which are toxic and kill selected cells, may encode therapeutic proteins which bolster a cell's immune response, or encode proteins which replace inactive or nonexistent proteins.
One protein which has recently been suggested for use in such therapies is the type 1 Herpes Simplex Virus thymidine kinase (HSVTK-1). Briefly, thymidine kinase is a salvage pathway enzyme which phosphorylates natural nucleoside substrates as well as nucleoside analogues (see Balasubramaniam et al.,
J. of Gen. Vir.
71:2979-2987, 1990). This protein may be utilized therapeutically by introducing a retroviral vector which expresses the protein into the cell, followed by administration of a nucleoside analogue such as acyclovir or ganciclovir. HSVTK-1 then phosphorylates the nucleoside analogue, creating a toxic product capable of killing the host cell. Thus, use of retroviral vectors which express HSVTK has been suggested for not only the treatment of cancers, but for other diseases as well.
The present invention provides novel thymidine kinase mutants with increased biological activities which are suitable for a variety of applications, such as gene therapy, and further provides other, related advantages.
SUMMARY OF THE INVENTION
Briefly stated, the present invention provides compositions and methods which utilize Herpesviridae thymidine kinase mutants. Within one aspect of the present invention, isolated nucleic acid molecules which encode Herpesviridae thymidine kinase enzymes comprising one or more mutations are provided, at least one of the mutations encoding an amino acid substitution upstream from a DRH nucleoside binding site which increases a biological activity of the thymidine kinase, as compared to unmutated thymidine kinase. Within another aspect, the mutation is an amino acid substitution within a DRH nucleoside binding site which increases a biological activity of said thymidine kinase, as compared to unmutated thymidine kinase. Within yet another aspect, isolated nucleic acid molecules are provided encoding a Herpesviridae thymidine kinase enzyme comprising one or more mutations, at least one of the mutations being an amino acid substitution downstream from a DRH nucleoside binding site (e.g., 4, 5 or 6 nucleotides downstream) Which increases a biological activity of the thymidine kinase, as compared to unmutated thymidine kinase. Representative examples of suitable Herpesviridae thymidine kinase enzymes include Herpes Simplex Virus Type 1 thymidine kinase, Herpes Simplex Virus Type 2 thymidine kinase, Varicella Zoster Virus thymidine kinase, and marmoset herpesvirus, feline herpesvirus type 1, pseudorabies virus, equine herpesvirus type 1, bovine herpesvirus type 1, turkey herpesvirus, Marek's disease virus, herpesvirus saimiri and Epstein-Barr virus thymidine kinases. Within other embodiments, the thymidine kinase may be a primate herpesvirus thymidine kinase, or a non-primate herpesvirus thymidine kinase, such as an avian herpesvirus thymidine kinase.
A wide variety of mutations are contemplated within the context of the present invention. For example, within one embodiment mutations which encode one or more amino acid substitutions from 1 to 7 amino acids upstream from the DRH nucleoside binding site are described. Within a preferred embodiment, the amino acid which is one position upstream from the DRH nucleoside binding site is substituted with an amino acid selected from the group consisting of valine, leucine, cysteine and isoleucine. Within another preferred embodiment, the amino acid alanine is substituted for the amino acid which is present seven amino acids upstream from the DRH nucleoside binding site. Within other embodiments, glutamic acid may be substituted for aspartic acid in the DRH nucleoside binding site. Within another embodiment, a histidine residue may be substituted for arginine in the DRH nucleoside binding site. Within other embodiments, the thymidine kinase enzyme is truncated, and yet retains biological activity.
Within further embodiments of the invention, isolated nucleic acid molecules are provided which encode a thymidine kinase enzyme capable of phosphorylating a nucleoside analogue (e.g., acyclovir or ganciclovir) at least one-fold over the phosphorylation of the nucleoside analogue by a wild-type thymidine kinase enzyme. Within other embodiments, the thymidine kinase enzyme phosphorylates a nucleoside analogue at least x-fold over the phosphorylation of a nucleoside analogue by a wild-type thymidine kinase enzyme, wherein x is selected from the group consisting of 1.5, 2, 2.5, 3, 3.5, 4, 4.5 and 5. Within yet another embodiment, the thymidine kinase enzyme is capable of phosphorylating a nucleoside analogu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Thymidine kinase mutants does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Thymidine kinase mutants, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thymidine kinase mutants will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2874618

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.