Sweat collecting device and methods for use and detection of...

Surgery – Diagnostic testing – Measuring or detecting nonradioactive constituent of body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S346000

Reexamination Certificate

active

06443892

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates generally to devices for the detection of chemicals and biochemicals in perspiration, methods for detecting chemicals and biochemicals using sweat collection devices, and methods for detecting tampering of sweat collection devices.
2. Description of the Related Art
Ingested drugs have long been known to appear in perspiration, which is defined here as including active perspiration such as that induced by exercise and heat, passive (insensible) perspiration, sebum, and other bodily excretions that appear on the skin surface, see D. A. Kidwell, J. C. Holland, and S. Athanaselis, Testing for drugs of abuse in saliva and sweat, J. Chromatog. B, 713 (1998) 111-135, incorporated herein by reference. A number of sweat collection devices have been developed to facilitate drug detection, including those described by Schoendorfer, et al. in U.S. Pat. No. 4,957,108 issued Sep. 18, 1990; Schoendorfer, et al. in U.S. Pat. No. 5,076,273 issued Dec. 31, 1991; Schoendorfer, et al. in U.S. Pat. No. 5,203,327 issued Apr. 20, 1993; Schoendorfer in U.S. Pat. No. 5,438,984 issued Aug. 8, 1995; Scheondorfer in U.S. Pat. No. 5,441,048 issued Aug. 15, 1995; Schoendorfer, et al. in U.S. Pat. No. 5,445,147 issued Aug. 29, 1995; Schoendorfer in U.S. Pat. No. 5,465,713 issued Nov. 14, 1995; Schoendorfer in U.S. Pat. No. 5,638,815 issued Jun. 17, 1997; Schoendorfer in U.S. Pat. No. 5,676,144 issued Oct. 14, 1997; Schoendorfer in U.S. Pat. No. 5,817,011 issued Oct. 6, 1998; Schoendorfer in U.S. Pat. No. 5,817,012 issued Oct. 6, 1998; Schoendorfer, et al in U.S. Pat. No. 5,899,856 issued May 4, 1999; Schoendorfer in U.S. Pat. No. 5,944,662 issued Aug. 31, 1999; D. E. C. Cole et al, Use of a new sample-collection device (Macroduct™) in anion analysis of human sweat, Clin. Chem. 32 (1986) pages 1375-1378; M. Phillips et al, Long-term sweat collection using salt-impregnated pads, J. Invest. Dermatol. 68 (1977) pages 221-224; M. Phillips, An improved adhesive patch for long-term collection of sweat, Biomater. Med. Dev. Artif. Org., 8 (1980) pages 13-21; C. C. Peck, Dermal substance collection device, U.S. Pat. No. 4,706,676, issued Nov. 17,1987; C. C. Peck, Dermal substance collection device, U.S. Pat. No. 4,960,467, issued Oct. 2, 1990; C. C. Peck, Dermal substance collection device, U.S. Pat. No. 4,819,645, issued Apr. 11, 1989; J. B. Eckenhoff et al, Sweat collection patch, U.S. Pat. No. 4,756,314, issued Jul. 12, 1988; and M. Phillips et al, A sweat-patch test for alcohol consumption: evaluation in continuous and episodic drinkers, Alcohol Clin. Exp. Res., 4 (1980) pages 391-395, all incorporated herein by reference.
Generally, sweat collection devices sandwich an absorbent pad between the skin and an outer membrane using a tamper-evident adhesive backing on the membrane. Careful preparation of the skin prior to application of the patch helps reduce the possibility of bacterial growth and previous skin contamination. Non-occlusive membranes allow water vapor to pass through the membrane, which increases comfort for the wearer and allows longer-term wear.
One currently commercially available device has combined the non-occlusive membrane with a cellulose collection pad to produce a sweat collection patch. Sweat patches have found wide application in the criminal justice system due to perceived advantages including user friendliness, non-invasiveness, easily observed placement and removal of the sweat patch, detectable adulteration attempts including punctures by needles and attempts to remove the device and either replace it with a new device or the same device, long drug-use detection interval during the wearing of approximately one week, and potential to identify unique metabolites. In addition, there are reports that the sweat patch may either deter or cause individuals to be more forthcoming about drug use.
Two reported features of the commercially available sweat patch are first, that the patch appears to protect the skin from contamination by the external environment after being applied, and second, that the skin is cleansed before application of the patch, potentially removing previously deposited drugs. The manufacturer of one commercially available patch states that “passive exposure to ambient drugs of abuse during the wear period is not detected by conventional toxicological analysis of post-wear patches” see Product Package Insert Part # P00020 Revision: A. PHARMCHEK™ Drugs of Abuse Patch For Collection of Cocaine and Cocaine Metabolite, Amphetamines, Opiates, Cannabinoid and Cannabinoid Metabolites, and Phencyclidine (PCP) Through the Skin. PharmChem Laboratories, Inc. Menlo Park, Calif. 1999.
An article by P. Kintz, Drug Testing in Addicts: a Comparison between Urine, Sweat, and Hair, Therapeutic Drug Monitoring, 18 (1996), incorporated herein by reference, suggested that nonvolatile substances from the environment cannot penetrate the transparent film, a semipermeable membrane over the pad that allows oxygen, water, and carbon dioxide to pass through the patch, leaving the skin underneath healthy. Further, in M. Burns et al, Monitoring Drug Use with a Sweat Patch: an Experiment with Cocaine, J. Anal. Tox., 19(January/February) (1994) 41-48, incorporated herein by reference, researchers suggested that larger nonvolatile molecules that cannot pass the polyurethane layer remain trapped on the collection pad. Additionally, V. Spiehler et al, Enzyme Immunoassay Validation for Qualitative Detection of Cocaine in Sweat, Clinical Chemistry, 42(1) (1996) 34-38 states that the transparent film portion of the patch allows oxygen, carbon dioxide, and water vapor to escape but prevents the escape of nonvolatile constituents present in sweat. An additional account by G. Skopp, et al, Preliminary Practical Findings on Drug Monitoring by a Transcutaneous Collection Device, J. Forensic Sci., 41(6) (1996) 933-937, stated that molecules larger than vapor-phase isopropanol are excluded by the molecular pore structure (~2 nm) of the plastic membrane. Skopp, et al. used the dye rhodamine B to study the permeability of the sweat patch's polyurethane membrane from Contamination From WithOut, (CFWO), where drugs external to the patch can penetrate the membrane. No CFWO was observed with rhodamine B. However, Skopp et al. used a hydrophilic dye, with both amine and carboxylic acid functional groups. The state of hydration of the inner pad is not reported. If the inner pad was dry, transport of molecules would be reduced and give a false impression of impermeability. Cone, et al., in Sweat Testing for Heroin, Cocaine, and Metabolites, J. Anal. Toxicol. 18 (1994) pages 298-305, incorporated herein by reference, explored CFWO by exposing subjects wearing skin patches to cocaine vapor. They observed some unexpectedly, high concentrations of cocaine (greater than 200 ng per patch), but dismissed them as laboratory handling error “because other patches collected from the same subject under similar conditions were determined to be negative”. Furthermore, subjects wore light clothing to cover the patches and were not actively sweating, factors which are predicted to lessen CFWO.
The sweat patch is becoming increasingly used in the U.S. criminal justice system to monitor drug use during pretrial and probationary release. Recently, offices of the U.S. Federal Public Defender have described cases where individuals under supervised pretrial or probationary release have had their sweat patch test positive while denying drug use in a credible manner. Cases include individuals with negative urine test results and positive sweat patch results, or close contact with a drug-contaminated environment. Several of these cases involved individuals identified as methamphetamine positive, who denied vehemently any methamphetamine use, some even while admitting they used other illegal drugs. In at least one instance, consecutive 48-hour urine specimens which covered the length of wear of the patch, tested negative while the patch tested positive. A common thre

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Sweat collecting device and methods for use and detection of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Sweat collecting device and methods for use and detection of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sweat collecting device and methods for use and detection of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2874588

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.