Precursor composition for metal oxide and preparation method...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S427000, C252S182290

Reexamination Certificate

active

06335393

ABSTRACT:

This application claims priority under 35 U.S.C. §§ 119 and/or 365 to Korean Patent Applications No. 98-4177 filed on Feb. 12, 1998 and No. 99-841 filed on Jan. 14, 1999; the entire content of which is hereby incorporated by reference.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a precursor composition for a metal oxide and a preparation method therefor, and more particularly, to a precursor composition for a metal oxide, which is thermally stable and easy to store due to its low reactivity to moisture in the air, and a preparation method therefor.
2. Description of the Related Art
A plasma display device is for displaying an image using a gas discharge phenomenon. Since the plasma display device has excellent luminance, contrast, and viewing angle properties, the plasma display device has been touted as a display device capable of replacing the CRT. In the plasma display device, gas discharges occur in gaps between electrodes when a voltage applied to the electrodes, and a phosphor is excited by the accompanying ultraviolet ray emissions, thereby emitting light.
The plasma display device is classified into an alternative (AC) type and a direct current (DC) type according to the discharge mechanism. The structure of a conventional AC type plasma display device is described as follows.
First electrodes as a transparent display electrode, and second electrodes as an address electrode are formed between a first substrate and a second substrate . Here, a plurality of first electrodes and a plurality of second electrodes are formed in strips on the inner surfaces of the first substrate and the second substrate at right angles.
A dielectric film and a protective film are formed in sequence on the first substrate having the first electrodes. Also, a dielectric film is formed on the second substrate having the second electrodes, and a plurality of barrier walls are formed on the dielectric film. A plurality of cells are formed by the barrier walls, and the cells are filled with an inert gas such as argon (Ar). Also, a phosphor layer is formed at a predetermined area of the cells.
In the above-described plasma display device, the protective film is formed by an E-beam, sputtering or spin-coating method. In the case where the protective film is formed by the E-beam or sputtering method, the manufacturing process itself is complicated and expensive equipment is used, so that manufacturing costs increases and much time is consumed. Thus, it make difficult to produce a cheap plasma display device.
Next, a step of forming a protective film by the spin-coating method will be described.
As a major component of a composition for forming a protective film, nano-sized alkaline earth metal oxide particles or an organometallic compound is used. Here, the alkaline earth metal oxide particles are obtained from alkaline earth metal alkoxide by a sol-gel process. Such alkaline earth metals are easily generated to secondary electron through collision of ions or electrons.
After preparing a composition for a protective film by adding a solvent to nano-sized alkaline earth metal oxide particles or an organometallic compound, the obtained composition is spin-coated on a dielectric film and dried, thereby completing a protective film.
However, the above-described spin-coating method has the following problems.
First, metal oxide particles contained in the composition for a protective film conglomerate with the passing of time, so characteristics of the composition are liable to change. Accordingly, stability during storage of the composition is poor.
Second, it is difficult to prepare the metal oxide particles or organic metal compound, and manufacturing costs are high. Also, when preparing the metal oxide particles by a sol-gel process, it is difficult to obtain the particle having narrow particles diameter distribution range.
Third, the obtained protective film has poor film quality and physical properties, such as transmittance, that are not satisfactory.
SUMMARY OF THE INVENTION
To solve the above problems, it is an objective of the present invention to provide a precursor composition for a metal oxide, which is thermally stable and has stability in storage due to its low reactivity to moisture in the air.
It is another objective of the present invention to provide a method for preparing the precursor composition for a metal oxide.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
To achieve the first objective of the present invention, there is provided a precursor composition for a metal oxide, comprising metal alkoxide and aromatic hydrocarbon.
Preferably, the aromatic hydrocarbon is naphthalene, stilbene or trimethylbenzene.
Preferably, the composition further comprises a binder, and the binder is polyethylcellulose or polyvinylacetate.
To achieve the second objective of the present invention, there is provided a method for preparing a precursor composition for a metal oxide, comprising the steps of:
(a) dissolving aromatic hydrocarbon in a first solvent and adding metal alkoxide to the solution;
(b) adding a second solvent to the mixture of the step (a); and
(c) removing the first solvent from the mixture of the steo (b) and adding water to the mixture.
Metal alkoxide, preferably, alkaline earth metal alkoxide, reacts with moisture in the air or in solvent to form precipitate as a metal hydrate, and the metal alkoxide is very unstable to heat. Thus, the metal alkoxide is easily decomposed by heat. The present invention is characterized in that aromatic hydrocarbon is added to and mixed with the metal alkoxide, so that stability to heat or moisture of the metal alkoxide is improved by interaction between aromatic hydrocarbon and metal alkoxide.
Preferably, the metal alkoxide is alkaline metal alkoxide, alkaline earth metal alkoxide or aluminum alkoxide, and the mixing mole ratio of the metal alkoxide and the aromatic hydrocarbon is 1:2 or more. Here, if the mixing mole ratio of the metal alkoxide and aromatic hydrocarbon is less than 1:2, a precipitate is formed from the metal oxide.
Hereinafter, a method for preparing a precursor composition for a metal oxide, and a method for forming a metal oxide film from the precursor composition for a metal oxide according to the present invention will be described.
First, organic substance having an aromatic ring, that is, aromatic hydrocarbon, is dissolved in a first solvent, metal alkoxide is added to the mixture, and then mixed sufficiently. Here, the first solvent is carbon tetrachloride (CCl
4
), chloroform (CH
3
Cl) or methanol (CH
3
OH).
Then, a second solvent is added to the mixture. If required, alkaline metal alkoxide is further added to the mixture. Here, when alkaline metal alkoxide is added to the mixture, the electron density of the metal oxide as the end product is increased, so that it is liable to generate secondary electrons through ion collision. As a result, the possibility of low-voltage driving increases. Here, the content of the alkaline metal alkoxide is preferably 0.01~10 mol % based on the content of the metal alkoxide. Here, if the content of the alkaline metal alkoxide is less than 0.01 mol %, a doping effect of the metal is trivial. On the contrary, if the content of the alkaline metal alkoxide exceeds 10 mol %, the secondary electron is generated in the surface of the metal oxide than the inside of the metal oxide. Then, the first solvent is removed from the reaction mixture, and the resultant is hydrated by adding water, thereby resulting in a precursor composition for a metal oxide. Here, the second solvent for printing is diethyleneglycol mono-n-butyletheracetate (BCA) or diethyleneglycol ethyletheracetate.
Then, if required, a binder is further added to the precursor composition for a metal oxide. Here, the content of the binder is determined to be at an appropriate level in consideration of the used water content and viscosity of the composition.
The obtained precursor composition for a metal oxide is prepared as a paste, and a metal oxide film is formed by a printing method using the prec

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Precursor composition for metal oxide and preparation method... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Precursor composition for metal oxide and preparation method..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Precursor composition for metal oxide and preparation method... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2871937

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.