Polyelectrolyte dispersants for hydrophobic particles in...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C523S161000, C526S224000, C526S287000, C525S212000

Reexamination Certificate

active

06395804

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to dispersants for hydrophobic particles and particulate including pigments in water-based systems. In particular, the inventive dispersant can be used for pigments such as those useful as inks adapted for ink jet printing applications.
BACKGROUND OF THE INVENTION
When hydrophobic particles are placed in water they tend to agglomerate. This tendency makes it difficult to obtain a dispersion of hydrophobic particles in a water-based system. To lessen this agglomeration tendency, a dispersant may be added to the mixture. If the dispersant has both hydrophobic and hydrophilic parts, the hydrophobic part will be attracted to the hydrophobic particle surface and the hydrophilic part will be solvated by the water.
In recent years, the use of thermal ink jet printers in numerous applications has increased dramatically. Such printers make use of liquid-based inks which are sprayed onto a receptor, typically a sheet of paper or film, to produce an image. By using four basic ink colors (black, yellow, cyan, and magenta or black, red, blue and yellow) as well as white pigments (such as TiO
2
) in various combinations and concentrations, virtually any color may be produced as part of the printed image. Additionally, ink jet technology is well-suited for high resolution graphic images, particularly those produced using electronic printing systems. Such systems typically employ computer technology to create, modify, and store images, text, graphics and the like.
Many of the inks that have been used in the past with ink jet and other printers are primarily comprised of dyes contained within organic-based carrier liquids. Although such inks may offer satisfactory performance in certain applications, the present trend is away from such systems, because such systems may tend to produce images that lack the light stability and durability required for outdoor and similarly demanding applications. Additionally, the use of organic-based carrier liquids may involve environmental and material-handling restrictions. The printing industry has sought inks that are primarily water-based to thereby reduce or eliminate restrictions associated with organic solvent-based systems.
Inks may comprise a suspension of pigment particles in a water-based carrier. However, the suspended pigments may tend to agglomerate. Because ink jet printers use very small jet nozzles (on the order of less than about 40 micrometers with droplet volumes on the order of picoliters) to provide high resolution images, pigment agglomerations may restrict or clog the printer heads. This effect is referred to herein as “plugging.” Additionally, in the case of thermal ink jet systems, the ink is subjected to high temperatures (approximately 350° C.), as a result of the heating element in the nozzle. Typically inks tend to agglomerate faster at higher temperatures, and may also settle onto, and coat, the heating elements of the printer heads. This causes a decreased thermal efficiency of the print head, which results in the formation of smaller ink droplets and lower image quality. This effect is commonly referred to as “kogation.”
To overcome the problems described above, pigment particles in some water-based ink jet inks have been stabilized from agglomeration with dispersants. In one approach, the dispersants were formed from surfactants having a hydrophilic portion as well as a hydrophobic portion, which hydrophobic portion adsorbs to pigment surfaces of varying hydrophobicity. In another approach, copolymers having hydrophilic segments and hydrophobic segments were used. Examples of these approaches are described in U.S. Pat. No. 4,597,794 and U.S. Pat. No. 5,085,698.
In the approaches described above, the hydrophobic segments of the surfactant or polymer can adsorb onto pigments by hydrophobic interaction between the dispersant molecule and the organic-based pigments whose surfaces tend to be hydrophobic. This hydrophobic interaction is usually not very strong. Because of this weak attraction, in thermal ink jet systems it is possible that the dispersant molecules can desorb from pigment surfaces, thereby allowing the pigment particles to agglomerate. During printing, this can result in plugging of the printer head jet nozzles. Although heat produced in a thermal ink jet system may strengthen the adsorption of the dispersant on the hydrophobic pigment surface, thus enhancing the stability of the ink, plugging and kogation remain a problem.
SUMMARY OF THE INVENTION
In view of the foregoing, a need exists for dispersants that strongly adsorb to hydrophobic particles and that inhibit particle agglomeration. A need also exists for water-based inks that offer increased stability. The present invention addresses such needs.
One aspect of the invention provides a dispersant for dispersing hydrophobic particles in an aqueous system comprising a hydrophobic segment comprised of a nonpolymerized hydrocarbon moiety joined to at least one terminal polymeric hydrophilic segment comprised of a polyelectrolyte.
Another embodiment of the invention relates to stable water-based systems in which an inventive dispersant is incorporated into a water-based dispersion of particles, the particles having hydrophobic surfaces. Such systems comprise, generally, an aqueous suspension of a) hydrophobic particles, and b) a dispersant comprising a hydrophobic segment comprised of a nonpolymerized hydrocarbon moiety, which can adsorb to hydrophobic particle surfaces, joined to at least one terminal polymeric hydrophilic segment comprised of a polyelectrolyte.
An alternate embodiment of the invention provides a dispersant wherein the hydrocarbon moiety has two opposite ends and wherein a polyelectrolyte is attached to each end of the hydrocarbon moiety.
Another embodiment of the invention provides a mixture of linear hydrophobe-terminated hydrophilic copolymers and multibranched hydrophilic copolymers.
A particular application of the present invention relates to stable water-based pigmented inks that meet the stringent requirements of ink jet and other printing applications. In these inks, an inventive dispersant is incorporated into a water-based pigment dispersion to inhibit agglomeration of the hydrophobic pigment particles.
As used in this invention:
“adsorb” refers to the adherence of an atom, ion, or molecule to the surface of another substance;
“dispersant/particle composite” means a dispersant molecule and the particle or particulate to which the dispersant is adsorbed; typically the composite will comprise layers of dispersant molecules on the particle or particulate;
“aliphatic group” or “aliphatic moiety” “long chain aliphatic group/moiety” means a linear, branched, cyclic, substituted or unsubstituted, non-polar hydrocarbon having approximately 6 to 100, preferably 8 to 20, carbon atoms;
“aromatic group” or “aromatic moiety” means a nonpolar hydrocarbon, having approximately 6 to 100, preferably 8 to 20, carbon atoms, comprising at least one cyclic structure containing at least one &pgr;-conjugated ring structure;
“hydrocarbon group” or “hydrocarbon moiety” means an aliphatic or aromatic group; “banding” refers to visible striations or lines of lower optical density that can occur when an ink is printed on a substrate;
“ionizable” means a neutral molecule comprising atoms capable of losing or gaining electrons, thereby acquiring a net electrical charge and forming an ion, e.g., when in a polar medium such as water;
“polyelectrolyte,” “polyelectrolytic,” “electrolytic” means an oligomer, polymer, or copolymer containing ionic constituents wherein an aqueous solution of the oligomer or (co)polymer will conduct an electric current;
“oligomer” means a polymer having approximately 10 to 50 monomer units;
“random copolymer” means a copolymer comprised of at least two types of monomer units, e.g., A and B, wherein the order of a combination of monomeric units is random;
“hydrophilic segment” means the portion(s) of the dispersant, distinct from the hydrophobic portion of the dispersant, that comprises a po

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polyelectrolyte dispersants for hydrophobic particles in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polyelectrolyte dispersants for hydrophobic particles in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polyelectrolyte dispersants for hydrophobic particles in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2871478

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.