Method and device for increasing elastomeric interconnection...

Electrical connectors – Including elastomeric or nonmetallic conductive portion – Adapted to be sandwiched between preformed panel circuit...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C439S591000

Reexamination Certificate

active

06447308

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to improved conductive elastomer interconnection devices, and methods for making them.
BACKGROUND OF THE INVENTION
As electronic systems get smaller, faster and lower cost, the classic methods of separable interconnection need to be replaced with new technologies. One such technology is based on anisotropic conducting polymer materials. Anisotropic Conducting Elastomers (ACE) are elastomers which conduct in one direction but are insulators in the other direction. One such example is ECPI-(Elastomeric Conducting Polymer Interconnect) a material developed by Lucent Technologies-Bell Laboratories. This material is formed by magnetically aligning fine magnetic particles in sheets of uncured silicone such that the particles form arrays of electrically isolated columns. These columns are frozen in place as the silicone cures. When a layer of ECPI is compressed between two electrical conductors, the particles in the compressed column come into contact with each other and the conductors, forming an electrically conductive path. Conductivity of the column remains over a compression range, which is a function of the material design. This range, often referred to as the material's “dynamic range”, provides compensation for the lack of coplanarity of the conductors. This is often referred to as “coplanarity compensation”.
As devices using ECPI warm up, the polymer thermally expands more than the metal particles forming the electrically conductive columns. Initially, the polymer expands into the interstitial spaces between the pads on the device(s), and into the topological voids created by the ECPI's own surface texture. As the temperature of the polymer rises, so does the amount of thermal expansion. If the expansion fills the topological voids and the temperature continues to rise, additional thermal expansion reduces the mechanical loading force on the (relatively rigid) conductive columns. If the polymer gets too hot and thus expands too much, the reduction in force on the particles in the conductive columns (which are initially compressed along the direction of the electrical paths) may cause the resistance to increase beyond acceptable limits.
In a typical application of ECPI, the interconnect formed using the ECPI replaces the soldered interconnect to allow a separable interconnection. Separable interconnection is generally required for testing the device, conditioning the device (burn-in) and for final application in the OEM product. One such example is in a Land Grid Array (LGA) where an array of pads on a device needs to be connected to a matching array on a board. A second example is when a Ball Grid Array (BGA), consisting of a device with an array of solder balls, is to be separably connected to a matching array on the board. In both of these examples, a layer of ECPI material placed between the device and the board can, when properly used, provide a reliable connection.
Moreover, the behavior of the elastomeric material is critical to the success of the interconnect's performance. Typical highly filled elastomeric materials exhibit poor elastic properties, and when formed into discrete button-like contacts, tend to move like putty, taking a severe set. These materials exhibit little residual spring force. These factors impact on the reliability of the contact, and virtually preclude multiple device insertions with different devices. Because these highly filled materials have poor elastic properties, an external spring member is required to create a contact force. However, the elastomeric button flows continuously under the force. The conventional solution is to limit the flow with a stop. The net effect is a very low contact force. In addition, elastomers in sheet form can have excellent elastic properties, but tend to behave like incompressible fluids. This behavior demands that the connector system design using sheet elastomers provide for a place for the material to move.
SUMMARY OF THE INVENTION
The device and methods of the invention provide a unique improvement to anisotropic conductive elastomers, and more specifically to ECPIs, which enhances performance and reliability, and broadens the range of applications.
It is therefore a primary object of this invention to provide a device for anisotropically or isotropically interconnecting two or more components, which enhances the quality and reliability of the interconnection.
It is a further object of this invention to provide a device for interconnecting two or more components, which is capable of accommodating repeated thermal excursions when in use.
It is a further object of this invention to provide a device for interconnecting two or more components using a compressive load, which reduces the distortion of electrical pathways during the assembly process by pre-expanding the interconnect medium in the plane that it would have been partially extruded into by the application of the compressive load.
It is a further object of this invention to provide a device for interconnecting two or more components, which resists the distortion from thermal or mechanical changes perpendicular to electrically conductive pathways within an anisotropically conductive medium, by constraining the perimeter of the anisotropically conductive medium.
It is a further object of this invention to provide, in a device for interconnecting two or more components, mechanical features to align the components.
It is a further object of this invention to provide a device for interconnecting two or more components, which is capable of repeated use for testing, conditioning and final application of the components.
It is a further object of this invention to provide a device for interconnecting two or more components, which provides flow space into which the elastomer materials in the device may flow under compression.
To increase the maximum reliable operating temperature of the ECPI, the material is stretched in a direction perpendicular to the conductive paths, which for a sheet form is along the plane of the sheet. The tension causes the elastomer within the matrix to contract vertically. The ratio of vertical contraction to horizontal pulling, in the absence of any conductive paths, is called the Poisson's ratio of the material. However, the ECPI sheet contains vertical columns of conductive particles, which are much stiffer (and stronger) than the elastomer. The ECPI sheet thus vertically contracts more in the areas between the columns than at the columns. This contraction between the columns greatly increases the volume of topological voids at the surface of the ECPI, thus increasing the maximum temperature at which the ECPI can reliably operate.
An added advantage of stretching the ECPI and securing it to a frame prior to its being compressed between devices is the reduction in lateral distortion during the assembly process. With typical systems, as the ECPI sheet is compressed, it is slightly extruded laterally, causing the columns towards the perimeter to bow. Since the top and bottom of the ECPI sheet are constrained by friction, the middle of the sheet moves laterally more than the surfaces, causing initially vertical columns to bow. If the lateral motion of the ECPI is constrained during the assembly process, this bowing is prevented.
The stretched ECPI of the invention also reduces the standard deviation of measured resistances, compared to typical results with otherwise identical configurations.
A preferred embodiment of the elastomeric device of the invention for electrically interconnecting two or more components, comprises: an elastomeric matrix having one or more outer surfaces; one or more electrically conductive pathways through the matrix; and a frame that holds the elastomeric matrix stretched along its plane (i.e., perpendicular to the electrically conductive pathways).
The pathways may initially be isotropic or anisotropic. In the latter instance, the pathways preferably comprise between about 2 to 25% magnetic particles by volume of the elastomeric matrix. A plur

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and device for increasing elastomeric interconnection... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and device for increasing elastomeric interconnection..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and device for increasing elastomeric interconnection... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2865816

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.