Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems
Reexamination Certificate
2000-05-16
2002-04-09
Jastrzab, Jeffrey R. (Department: 3762)
Surgery: light, thermal, and electrical application
Light, thermal, and electrical application
Electrical therapeutic systems
C607S025000
Reexamination Certificate
active
06370430
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to the field of methods and medical devices for modulating cardiac muscle activity and contractility and for cardiac pacing and more specifically to the field of methods for controlling the delivery of non-excitatory excitable tissue control (ETC) signals to the heart.
BACKGROUND OF THE INVENTION
Excitable tissue control (ETC) devices are devices which modulate the activity of excitable tissues by application of non-excitatory electrical field signals to the excitable tissue through suitable electrodes in contact with the tissue. For example, ETC devices which are also known in the art as cardiac contractility modulation (CCM) devices may be used, inter alia, to increase or decrease the contractility of cardiac muscle in vitro, in vivo and in situ., as disclosed in detail in PCT application PCT/IL97/00012 (International Publication Number WO 97/25098) to Ben-Haim et al., titled “ELECTRICAL MUSCLE CONTROLLER”, incorporated herein by reference. Other methods and applications of ETC devices are disclosed in PCT application PCT/IL97/00231 (International Publication Number WO 98/10828) titled “APPARATUS AND METHOD FOR CONTROLLING THE CONTRACTILITY OF MUSCLES” to Ben Haim et al., incorporated herein by reference, PCT application PCT/IL97/00232 (International Publication Number WO 98/10829) titled “DRUG-DEVICE COMBINATION FOR CONTROLLING THE CONTRACTILITY OF MUSCLES” to Ben Haim et al., incorporated herein by reference and PCT application PCT/IL97/00233 (International Publication Number WO 98/10830) titled “FENCING OF CARDIAC MUSCLES” to Ben Haim et al., incorporated herein by reference, PCT application PCT/IL97/00235 (International Publications Number WO 98/10831) to Ben Haim et al., titled “CARDIAC OUTPUT CONTROLLER”, incorporated herein by reference.
Co-Pending U.S. patent application to Darvish et al., Ser. No. 09/260,769, titled “CONTRACTILITY ENHANCEMENT USING EXCITABLE TISSUE CONTROL AND MULTI-SITE PACING”, filed Mar. 2, 1999 and assigned to the common assignee of the present application, the entire specification of which is incorporated herein by reference, discloses a method for multi-site cardiac pacing combined with ETC signal delivery for cardiac output enhancement.
Further applications of the ETC including devices combining cardiac pacing and cardiac contractility modulation are disclosed in PCT Application, International Publication No. WO 98/10832, titled “CARDIAC OUTPUT ENHANCED PACEMAKER” to Ben Haim et al., co-assigned to the assignee of the present application. Such ETC devices function by applying to selected cardiac segments non-excitatory electrical signals of suitable amplitude and waveform, appropriately timed with respect to the heart's intrinsic electrical activity or with respect to paced cardiac electrical activity. The contraction of the selected segments can be modulated to increase or decrease the stroke volume of the heart. The timing of the ETC signals must be carefully controlled since application of the ETC signal to the myocardium at inappropriate times may be arrhythmogenic. The ETC signal must therefore be applied to the selected cardiac segment within a defined time interval during which the selected cardiac segment will not be stimulated by the ETC signal.
As disclosed in International Publication No. WO 98/10832, the ETC signal may be timed relative to a trigger signal which is also used as a pacing trigger, or may be timed relative to locally sensed depolarizing electrogram signals.
Timing of the delivery of ETC signals relative to the time of detection of locally sensed electrogram signals may present certain practical problems. For example, triggering of the ETC signal by any locally detected depolarizing signals irrespective of the time of detection of the depolarizing signal within the cardiac beat cycle, may increase the probability of spurious detection of noise signals or of ectopic beats such as premature ventricular contractions (PVCs) or the like, which may lead to delivery of improperly timed and potentially arrhythmogenic ETC signals. It is therefore desirable to have a method for determining proper timing of the delivery of ETC signals without unduly increasing the probability of delivering an improperly timed ETC signal caused by spurious noise detection or by detection of ectopic beats.
Co-pending U.S. Patent Application to Mika et al., Ser. No. 09/276,460, titled “APPARATUS AND METHOD FOR TIMING THE DELIVERY OF NON-EXCITATORY ETC SIGNALS TO A HEART”, filed Mar. 25, 1999 and assigned to the common assignee of the present application, the entire specification of which is incorporated herein by reference, discloses a method for timing the delivery of non-excitatory ETC signals to a heart using, inter alia, an alert window period for reducing the probability of delivering an improperly timed ETC signal to the heart due to spurious detection of noise or ectopic beats.
Co-pending U.S. patent application Ser. No. 09/338,649 to Mika et al., titled “APPARATUS AND METHOD FOR SETTING THE PARAMETERS OF AN ALERT WINDOW USED FOR TIMING THE DELIVERY OF ETC SIGNALS TO A HEART UNDER VARYING CARDIAC CONDITIONS”, filed Jun. 23, 1999, the entire specification of which is incorporated herein by reference, discloses devices and methods for timing of delivery of ETC signals to the heart using, inter alia, a dynamically varying alert window period for event sensing.
Co-pending U.S. patent application Ser. No. 09/328,068 to Mika et al., filed Jun. 8, 1999, titled “APPARATUS AND METHOD FOR COLLECTING DATA USEFUL FOR DETERMINING THE PARAMETERS OF AN ALERT WINDOW FOR TIMING DELIVERY OF ETC SIGNALS TO A HEART UNDER VARYING CARDIAC CONDITIONS”, the entire specification of which is incorporated herein by reference, discloses devices and methods for collecting patient data which is usable for the operation of a device for timing of delivery of ETC signals to the heart using, inter alia, a dynamically varying alert window period for event sensing.
SUMMARY OF THE INVENTION
It is noted that, while generally the term ETC signal refers to non-excitatory electrical signals applied to an excitable tissue, the terms ETC signal and CCM signal are interchangeably used throughout the present application to define non-excitatory cardiac contractility modulating electrical signals which are delivered to a heart. Similarly, while generally the term ETC device refers to a device which is capable, inter alia, of delivering non-excitatory contractility modulating electrical signals to an excitable tissue, the terms ETC device and CCM device are interchangeably used throughout the present application, to define a device which is capable, inter alia, of delivering non-excitatory cardiac contractility modulating electrical signals to a heart.
There is therefore provided, in accordance with a preferred embodiment of the present invention a method for controlling the delivery of a non-excitatory cardiac contractility modulating signals to a heart within a cardiac beat cycle. The method includes the step of sensing electrical activity in or about a first cardiac chamber to provide a first electrogram signal. The method also includes the step of detecting electrical events in the first electrogram signal. The method also includes the step of providing a first artifact window within the current beat cycle and detecting events occurring in the first electrogram signal within the duration of the first artifact window. The first artifact window starts at or after a trigger event representing the beginning of the current cardiac beat cycle. The first artifact window has a first artifact window duration. The method also includes the step of providing an alert window period within the current beat cycle. The alert window period has a first duration and is delayed from the trigger event. The method also includes the step of enabling the delivery of a cardiac contractility modulating signal to the first chamber of the heart within the current beat cycle in response to a first event detected in the first electrogram signal
Belsky Ziv
Mika Yuval
Cowan Liebowitz & Latman P.C.
Dippert William H.
Impulse Dynamics N.V.
Jastrzab Jeffrey R.
LandOfFree
Apparatus and method for controlling the delivery of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus and method for controlling the delivery of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for controlling the delivery of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2863537