CRC-free medicinal aerosol formulations of...

Drug – bio-affecting and body treating compositions – Effervescent or pressurized fluid containing – Organic pressurized fluid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S046000

Reexamination Certificate

active

06352684

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to medicinal aerosol formulations and in particular to formulations suitable for pulmonary, nasal, buccal or topical administration which are at least substantially free of chlorofluorocarbons.
BACKGROUND TO THE INVENTION
Since the metered dose pressurised inhaler was introduced in the mid 1950's, inhalation has become the most widely used route for delivering bronchodilator drugs and steroids to the airways of asthmatic patients. Compared with oral administration of bronchodilators, inhalation offers a rapid onset of action and a low instance of systemic side effects. More recently, inhalation from a pressurised inhaler has been a route selected for the administration of other drugs, e.g., ergotamine, which are not primarily concerned with treatment of a bronchial malady.
The metered dose inhaler is dependent upon the propulsive force of a propellant system used in its manufacture. The propellant generally comprises a mixture of liquified chlorofluorocarbons (CFC's) which are selected to provide the desired vapour pressure and stability of the formulation, Propellants 11, 12 and 114 are the most widely used propellants in aerosol formulations for inhalation administration.
In recent years it has been established that CFC's react with the ozone layer around the earth and contribute towards its depletion. There has been considerable pressure around the world to reduce substantially the use of CFC's, and various Governments have banned the “non-essential” use of CFC's. Such “non-essential” uses include the use of CFC's as refrigerants and blowing agents, but heretofore the use of CFC's in medicines, which contributes to less than 1% of the total use of CFC's, has not been restricted. Nevertheless, in view of the adverse effect of CFC's on the ozone layer it is desirable to seek alternative propellant systems which are suitable for use in inhalation aerosols.
U.S. Patent No. 4,174,295 discloses aerosol propellant compositions which consist of a mixture of a hydrogen-containing chlorofluorocarbon or fluorocarbon (A), selected from the group consisting of CHClF
2
(Freon 22), CH
2
F
2
(Freon 32) and CF
3
-CH
3
(Freon 143a), with a hydrogen-containing fluorocarbon or chlorofluorocarbon (B) selected from the group consisting of: CH
2
ClF (Freon 31), CClF
2
-CHClF (Freon 123a), CF
3
-CHClF (Freon 124), CHF
2
-CClF
2
(Freon 124a), CHClF-CHF
2
(Freon 133), CF
3
-CH
2
Cl (Freon 133a), CHF
2
-CHF
2
(Freon 134), CF
3
-CH
2
F (Freon 134a), CClF
2
-CH
3
(Freon 142b) and CHF
2
-CH
3
(Freon 152a). The compositions may contain a third component (C) consisting of a saturated hydrocarbon propellant, e.g., n-butane, isobutane, pentane and isopentanes. The propellant compositions comprise 5 to 60% of (A), 5 to 95% of (B) and 0 to 50% of (C) and are said to be suitable for application in the fields of: hair lacquers, anti-perspiration products, perfumes, deodorants for rooms, paints, insecticides, for home cleaning products, for waxes, etc. The compositions may contain dispersing agents and solvents, e.g., methylene chloride, ethanol etc.
It has now been found that 1,1,1,2-tetrafluoroethane has particularly suitable properties for use as a propellant for medicinal aerosol formulations when used in combination with a surface active agent and an adjuvant having a higher polarity than 1,1,1,2-tetrafluoroethane.
SUMMARY OF THE INVENTION
According to the present invention there is provided an aerosol formulation comprising a medicament, a surfactant, 1,1,1,2-tetrafluoroethane and at least one compound having a higher polarity than 1,1,1,2-tetrafluoroethane.
It has been found that 1,1,1,2-tetrafluoroethane, hereinafter referred to as Propellant 134a, may be employed as a propellant for aerosol formulations suitable for inhalation therapy when used in combination with a compound (hereinafter an “adjuvant”) having a higher polarity than Propellant 134a. The adjuvant should be miscible with Propellant 134a in the amounts employed. Suitable adjuvants include alcohols such as ethyl alcohol, isopropyl alcohol, propylene glycol, hydrocarbons such as propane, butane, isobutane, pentane, isopentane, neopentane, and other propellants such as those commonly referred to as Propellants 11, 12, 114, 113, 142b, 152a 124, and dimethyl ether. The combination of one or more of such adjuvants with Propellant 134a provides a propellant system which has comparable properties to those of propellant systems based on CFC's, allowing use of known surfactants and additives in the pharmaceutical formulations and conventional valve components. This is particularly advantageous since the toxicity and use of such compounds in metered dose inhalers for drug delivery to the human lung is well established. Preferred adjuvants are liquids or gases at room temperature (22° C.) at atmospheric pressure.
Recently it has been established that certain CFC'S which have been used as anesthetics are not significantly ozone depleting agents as they are broken down in the lower atmosphere. Such compounds have a higher polarity than Propellant 134a and may be employed in the composition of the invention. Examples of such compounds include 2-bromo-2-chloro-1,1,1,-trifluoroethane, 2-chloro-1-(difluoromethoxy)-1,1,2-trifluoroethane and 2-chloro-2-(difluoromethoxy)-1,1,1-trifluoroethane.
In contrast to the prior art the compositions of the invention do not require the presence of Freon 22, Freon 32 or Freon 143a to provide useful properties; these propellants are preferably absent or present in minor amounts of less than 5% by weight of the propellant composition. The compositions are preferably free from CFC's.
The particular adjuvant(s) used and the concentration of the adjuvant(s) is selected according to the particular medicament used and the desired physical properties of the formulation.
It has been found that the use of Propellant 134a and drug asia binary mixture or in combination with a conventional surfactant such as sorbitan trioleate does not provide formulations having suitable properties for use with pressurised inhalers. It has been established that the physical parameters of polarity, vapour pressure, density, viscosity and interfacial tension are all important in obtaining a stable aerosol formulation, and by a suitable selection of a compound having a polarity higher than that of Propellant 134a stable aerosol formulations using Propellant 134a may be prepared.
The addition of a compound of higher polarity than Propellant 134a to Propellant 134a provides a mixture in which increased amounts of surfactant may be dissolved compared to their solubility in Propellant 134a alone. The presence of increased amounts of solubilised surfactant allows the preparation of stable, homogenous suspensions of drug particles. The presence of large amounts of solubilised surfactant may also assist in obtaining stable solution formulations of certain drugs.
The polarity of Propellant 134a and of an adjuvant may be quantified, and thus compared, in terms of a dielectric constant, or by using Maxwell's equation to relate dielectric constant to the square of the refractive index—the refractive index of materials being readily measurable or obtainable from the literature.
Alternatively, the polarity of adjuvants may be measured using the Kauri-butanol value for estimation of solvent power. The protocol is described in ASTM Standard: Designation 1133-86. However, the scope of the aforementioned test method is limited to hydrocarbon solvents having a boiling point over 40° C. The method has been modified as described below for application to more volatile substances such as is required for propellant.
Standardisation
In conventional testing the Kauri resin solution is standardised against toluene, which has an assigned value of 105, and a mixture of 75% n-heptane and 25% toluene by volume which has an assigned value of 40. When the sample has a Kauri-butanol value lower than 40, it is more appropriate to use a single reference standard of 75% n-

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

CRC-free medicinal aerosol formulations of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with CRC-free medicinal aerosol formulations of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and CRC-free medicinal aerosol formulations of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2862110

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.