Rotate advance catheterization system

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S164070, C604S165010, C604S528000

Reexamination Certificate

active

06379334

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field of the Invention
This invention most generally relates to apparatus and methods of catheterization and related treatments of the genitourinary and gastrointestinal passages of mammals. More particularly, the invention relates to catheters, dilators, occluders, stents, suprapubic catheters, camera introducers and related medical devices subject to being proximally propelled and directed for advancement and control in mammalian genitourinary and gastrointestinal passages.
2. Description of the Prior Art
In most mammals, mucous membranes line all those passages by which the internal parts communicate with the exterior, and are continuous with the skin at the various orifices of the surface of the body. They are soft and velvety, and very vascular, and their surface is coated over by their secretion, mucus, which is of a tenacious consistence, and serves to protect them from the foreign substances introduced into the body with which they are brought in contact.
They are described as lining the two tracts—the genitourinary and the gastrointestinal; and all, or almost all, mucous membranes may be classed as belonging to and continuous with the one or the other of these tracts. Catheterization of any of these similar bodily passages may at times be useful or necessary.
Urinary outlet problems most likely have been around for as long as humans. History has the ancient Chinese using onion stalks to relieve people of acute urinary retention.
Literature refers to such problems as far back as 206 B.C., more than 2000 years ago. Romans used catheters, first invented by Erasistratus, a Greek doctor in the third century B.C. Roman catheters were fine tubes made of bronze. The Roman gynecologist Soranus describes how catheters could be used to push stones out of the way and back into the cavity of the bladder, and thus restore urine flow. Excavations in Pompeii unearthed several bronze catheters. These instruments were well constructed but relatively simple and showed that designs changed little from the period 79 AD until 1700 A.D.
However, during the 17th and 18th centuries catheter construction became more complex with an intensified search for an appropriate substance that would be at once flexible, non-irritating and functional. England, France, and the U.S.A. had individuals and companies deeply involved with urinary catheters during this period. Many variations were produced but they all caused much stress on the patient when these rigid devices were pushed into the urethra. The first practical breakthrough was by the French using gum elastic catheters—a catheter that would bend better in the urethral channel and not scour the mucosa so much in the process.
Charles Goodyear improved upon what the French produced when he successfully vulcanized crude rubber. The problem of manufacturing an instrument which was both sufficiently rigid to enable it to be pushed through the urethra into the bladder and yet flexible enough to negotiate the path, had at last reached the point of practicality, not withstanding its shortcomings. At that time, and still to this day, a functional urethral catheter is defined as one that is flexible enough to negotiate the bends and stable enough to push through the length of the urethral passage.
The French urologist J. J. Cazenave, with the hopes that his country would regain leadership in the catheter field, dedicated 25-30 years of his life improving the flexible durable catheter. This was in the late 1800's and his catheter, made of decalcified ivory, was a dated device but shows the consistency of the state of the art wherein catheters are pushed into and negotiated along the urethral passage toward the bladder.
During the past 300 years or so, intensified development efforts were stimulated by professional pride, national pride and financial rewards. These efforts yielded many improvements, such as changes to size, curve shape, materials of construction, smoothness, lubricants, coatings, combinations of materials, physical properties, chemical properties and more, yet all subscribed to the basic principle of external push-to-advance.
The catheters of the prior art are large and stiff, difficult and uncomfortable to administer, and uncomfortable to wear for extended periods. There is a degree of skill, tolerance and patience required that takes much time, training and practice to learn. The difficulty, discomfort, risk of injury and infection, inhibition and inconvenience of the methods and tools of the known art results in the deprivation for many patients of the freedom to work, play and travel as do unaffected people.
The anatomy of the adult male urinary tract, as illustrated in
FIG. 1
, has a bladder
004
where urine is collected prior to exiting the body via the urethra
006
. The bladder
004
converges into the urethra
006
at a muscular exit called the bladder neck
005
. Approximately the first one inch of the urethra lies within the prostate
007
, which is a chestnut-sized gland. The next approximately half inch passes through the external sphincter
008
, which is the muscular flow valve that controls the release of urine. The remaining six inches of the urethra lie in a spongy zone, exiting the body at the meatus
009
.
The normal process of emptying the bladder can be interrupted by two causes. One is bladder outlet obstruction and the other is failure of the nerves linking the bladder to the brain. The most frequent cause of bladder outlet obstruction in males is enlargement of the prostate gland by hypertrophy or hyperplasia. In older males, it is not uncommon for a progressive enlargement of the prostate to constrict the prostate urethra. This condition, known as benign prostatic hyperplasia (BPH), can cause a variety of obstructive symptoms, including urinary hesitancy, straining to void, decreased size and force of the urinary stream and in extreme cases, complete urinary retention possibly leading to renal failure.
The most common surgical intervention for BPH, transurethral resection of the prostate, or TURP, has a lengthy recovery period of up to one year, and presents a high operative risk for complications such as sexual dysfunction. Up to 10% of those subjected to such surgery are left with mild to moderate stress incontinence. Approximately 400,000 patients in the United States and approximately 500,000 patients internationally were diagnosed in 1994 with BPH or cancer-induced bladder outlet obstructions that were sufficiently severe to warrant TURP or alternative surgery, according to industry sources.
Because of the high costs, medical risks and quality of life compromises associated with TURP, new technologies have begun to challenge TURP's position as the standard treatment for severe BPH. Recently, the U.S. Food and Drug Administration approved two drugs, tera zosin hydrochloride and rinasteride, to treat BPH. These drugs generally do not improve symptoms for six to nine months after treatment begins, and are not without side effects.
Urethral strictures are another cause of outlet obstruction, often due to fibrous tissue growth resulting from reaction to catheters or cystoscopes or from injury, birth defects or disease, and are commonly treated by urethral dilation, catheterization or surgery. Men with urethral strictures also experience a limited ability to urinate, which may cause extreme discomfort and, if left untreated may cause complications that necessitate catheterization. Approximately 50,000 patients in the United States were diagnosed with recurrent urethral strictures in 1994, according to industry sources. The inventor estimates that approximately 75,000 additional patients were diagnosed internationally.
Women suffer from urinary incontinence far more often than men and at an younger age primarily because of the stress associated with pregnancy and childbirth, the shorter length of the female urethra, and the absence of a prostate. The U.S. Department of Health and Human Services (HHS) estimates that the involuntary loss of urine affects approximately

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Rotate advance catheterization system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Rotate advance catheterization system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rotate advance catheterization system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2860519

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.