Penetrating endoscope and endoscopic surgical instrument...

Surgery – Endoscope – With camera or solid state imager

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S129000, C600S114000, C600S104000

Reexamination Certificate

active

06387043

ABSTRACT:

BACKGROUND OF THE INVENTION
This application claims benefit of U.S. application Ser. No. 60/085,243, filed May 13, 1998, which claim benefit of U.S. application Ser. No. 60/085,242, which claim benefit of U.S. application Ser. No. 60/093/069, filed Jul. 16, 1998.
1. Field of the Invention
The present invention pertains to endoscopes in general and, more particularly, to a penetrating endoscopic instrument with a solid-state image sensor for penetrating into anatomical tissue and an endoscopic surgical instrument carrying an endoscope with a solid-state image sensor.
2. Discussion of the Prior Art
Various procedures are accomplished in both open surgery and endoscopic surgery, and generally include multiple steps requiring various operating instruments. “Open surgery” refers to surgery wherein the surgeon gains access to the surgical site by a relatively large incision and “endoscopic surgery” refers to minimally invasive surgery wherein the surgeon gains access to the surgical site via one or more portals through which an endoscope is introduced to view the surgical site and through which instruments having “end effectors”, such as forceps, cutters, needle holders, cauterizers, and the like, are introduced to the surgical site.
The performance of an endoscopic procedure typically involves creation of one or more puncture sites through a wall of an anatomical cavity using a penetrating instrument including an obturator, such as a trocar, disposed within a portal sleeve. After the penetrating instrument has penetrated into the anatomical cavity, the obturator is withdrawn, leaving the sleeve in place to form a portal in the cavity wall for the introduction of instruments such as endoscopes, scissors, forceps, needle holders and the like, into the anatomical cavity. The various end effectors at the distal end of the instrument are manipulated by the surgeon using controls disposed at the proximal end of the instrument while viewing the end effectors using the endoscope.
Endoscopes have included a variety of transducers such as vidicons (i.e., closed circuit television camera tubes) and sold-state Charge Coupled Devices (CCDs) for converting image light into electrical image signals for transmission to a viewing screen in the operating room (OR). CCD solid-state image sensors provide the benefits of small size and flexibility in image sensor placement, but are relatively difficult and expensive to implement in medical instruments, since CCD sensor signals require processing through complex and expensive ancillary equipment, if a usable image is to be displayed.
Endoscopic instruments, in general, also have been so expensive to use, sterilize and maintain that only surgeons in well-funded medical facilities have had access to instruments providing visualization in the body. There has been a long-felt need to move the site of medical care out of the OR to the hospital bed side or to an out-patient care facility. Endoscopic visualization could become an important component of patient-side care, were it available at a manageable price, and could be used for monitoring, as opposed to diagnosis, since endoscopic visualization could be performed daily or weekly, at bed side. If an economical, disposable alternative were available, endoscopic instruments for use at the bed side, in out-patient care, in ambulances or in the home could be provided for use in a wide variety of medical and dental applications.
Prior art endoscopes also suffer from many disadvantages when used in the procedures for which they are presently recommended. A major disadvantage of prior art endoscopes is that they cannot be used during penetration of anatomical tissue to view the anatomical tissue being penetrated (e.g. using a trocar penetrating member). Thus, it is difficult for a surgeon to know whether to alter the path of the perietrating member to avoid blood vessels and other types of anatomical tissue and organs. In an effort to overcome this disadvantage, a number of manufacturers have developed optical trocars such as the United States Surgical Corps Visiport™ trocar and the Ethicon Endosurgery's Optiview™ trocar, both of which employ a conventional elongated endoscope inserted into a lumen or cannula and providing visibility through a transparent trocar distal end. While the Visiport m and Optiview™ optical trocars do provide visibility during the penetrating step, they are still subject to the disadvantages associated with conventional endoscopic surgical procedures as outlined above and so are not useful in moving patient care out of expensive OR facilities and closer to the bed side.
SUMMARY OF THE INVENTION
A penetrating endoscope of the invention provides visualization of organ or tissue structures or foreign objects in a body. The penetrating endoscope includes an elongate penetrating member, a complementary metal oxide semiconductor (CMOS) image sensor and an objective lens. The elongate penetrating member has a longitudinal axis, a proximal end that is disposed externally and a sharp penetrating distal end that is adapted for insertion into the body by penetrating anatomical tissue. The CMOS image sensor is substantially planar and includes a plurality of pixels and a pixel signal processing circuit that generates a color image ready signal. The CMOS image sensor converts image light energy into electrical color image ready signal energy and transmits it out of the body. The color image ready signal is adapted for viewing on a color image display. The CMOS image sensor is carried on the elongate penetrating member adjacent the elongate penetrating member distal end.
The objective lens is carried on the elongate penetrating member distal end on an optical axis and focuses an image corresponding to an endoscope field of view at an image plane intersecting the optical axis. The CMOS image sensor is mounted with the CMOS image sensor pixels disposed substantially in the image plane and on the optical axis.
An alternative embodiment of the invention is an endoscope that provides visualization of organ or tissue structures or foreign objects in the body. The endoscope includes an elongate member but also has the longitudinal axis, the proximal end and the distal end as described above. The elongate member is adapted to be inserted through a portal into the body. Further, the endoscope includes the CMOS image sensor and the objective lens as described above.
Another alternative embodiment of the endoscope for providing visualization of organ or tissue structures or foreign objects in the body also includes the elements described above. Further, the endoscope includes at least one fixed focus objective lens element and a cutting end effector. The at least one fixed focus objective lens element has a depth of field with a selected minimum in-focus distance for an in-focus image at the image plane. The cutting end effector has a selected length substantially equal to or greater than the minimum in-focus distance.
The features and advantages of the present invention will become apparent upon consideration of the following detailed description of a specific embodiment thereof, particularly when taken in conjunction with the accompanying drawings, wherein like reference numerals in the various figures are utilized to designate like components.


REFERENCES:
patent: 5373317 (1994-12-01), Salvati et al.
patent: 5467762 (1995-11-01), Sauer et al.
patent: 5591192 (1997-01-01), Privitera et al.
patent: 5609562 (1997-03-01), Kaali
patent: 5684820 (1997-11-01), Riek et al.
patent: 5734418 (1998-03-01), Danna
patent: 5810876 (1998-09-01), Kelleher
patent: 5817061 (1998-10-01), Goodwin et al.
patent: 5873814 (1999-02-01), Adair
patent: 5891013 (1999-04-01), Thompson
patent: 5928137 (1999-07-01), Green
patent: 5929901 (1999-07-01), Adair et al.
patent: 6086528 (2000-07-01), Adair
patent: 6221007 (2001-04-01), Green

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Penetrating endoscope and endoscopic surgical instrument... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Penetrating endoscope and endoscopic surgical instrument..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Penetrating endoscope and endoscopic surgical instrument... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2856998

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.