Acyl derivatives of 4-demethylpenclomedine, use thereof and...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S333000, C514S348000, C546S261000, C546S280400, C546S283400, C546S296000

Reexamination Certificate

active

06376518

ABSTRACT:

DESCRIPTION
Technical Field
The present invention relates to certain derivatives of 4-demethylpenclomedine (also referred to herein as DM-PEN) and especially to acyl derivatives of DM-PEN. The present invention also relates to pharmaceutical compositions comprising the acyl derivatives of the present invention, as well as a method of using the compounds in treating cancer in a mammal. The present invention also relates to a method for producing the compounds of the present invention.
BACKGROUND OF INVENTION
Even though significant advances have occurred in treatment of cancer, it still remains a major health concern. It has been reported that cancer is the cause of death of up to one of every four Americans.
Included among the known chemotherapeutic drugs are carmustine, doxorubicin, methotrexate, TAXOL®, nitrogen mustard, procarbazine, and vinblastine, to name only a few. However, many chemotherapeutic drugs also produce undesirable side effects in the patient. For example, U.S. Pat. No. 4,717,726 reportedly discloses a compound suitable for inhibiting the growth of certain types of malignant neoplasms in mammals. See also Plowman et al.,
Cancer Res
., 49 (1989), 1909-1915. The disclosed compound, 3,5-dichloro-2,4-dimethoxy-6-(trichloromethyl)pyridine, also known as penclomedine, is not satisfactory as a chemotherapeutic, however, because it is known to produce certain undesirable side effects especially in the central nervous system.
For example, neurological and hematological toxicities of penclomedine have been reported in preclinical and early clinical studies. Dose related neurotoxicity, consisting of muscle tremors, incoordination, convulsions and reduced activity, has been observed in rats. Neurotoxicity appears to be related to peak plasma drug concentrations, as it developed during or immediately after infusion and could be ameliorated by decreasing the rate of drug administration. In dogs, severe emesis and seizures have been associated with plasma penclomedine levels above 30 &mgr;M. Neurotoxicity, consisting of dysmetria, ataxia, and vertigo, was also the principal dose limiting toxicity of penclomedine administered as a one hour infusion for 5 consecutive days in patients with advanced solid tumors. The presence of these toxicities, at much lower peak plasma concentrations compared to those reported in preclinical studies, may preclude the administration of higher doses of penclomedine and the achievement of concentrations associated with optimal antitumor activity. Berlin et al.,
Proc. Amer. Assoc. Cancer Res
., 36, 238 (1005); O'Reilly et al.,
Proc. Amer. Soc. Clin. Oncol
., 14, 471 (1995).
Some relevant background art can be found in O'Reilley et al.,
Clinical Cancer Research
, 2 (March 1996), 541-548. This reference describes a study to assess the distribution of
14
C-penclomedine in the tissues and tumors of tumor-bearing rats. The study found that the predominant radioactive species in the brain was penclomedine, which may explain the observed neurotoxicity of the drug.
More recently, 3,5-dichloro-2-methoxy-4-hydroxy-6-(trichloromethyl)pyridine or 4-demethylpenclomedine has been suggested as a compound for treating cancer. See WO 97/46531 to Hartman et al.
Notwithstanding the advances in cancer treatment that have been made, there still remains room for improved drugs that are effective in treating cancer, while at the same time exhibit reduced adverse side effects.
SUMMARY OF INVENTION
The present invention relates to novel acyl derivatives of 4-demethylpenclomedine represented by the following formula I:
and pharmaceutically acceptable salts thereof.
Another aspect of the present invention relates to pharmaceutical compositions containing the above-disclosed compounds.
The present invention is also concerned with methods of using the compounds of the present invention in treating cancer in a mammal.
A still further aspect of the present invention is concerned with a method for preparing the above-disclosed compounds of the present invention.
In particular, acyl compounds of the present invention can be produced by reacting 4-demethylpenclomedine with an acylating agent such as an acyl chloride or acyl anhydride.
If desired, such reaction can be carried out in the presence of a base.
Still other objects and advantages of the present invention will become readily apparent by those skilled in the art from the following detailed description, wherein it is shown and described only the preferred embodiments of the invention, simply by way of illustration of the best mode contemplated of carrying out the invention. As will be realized, the invention is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, without departing from the invention. Accordingly, the description is to be regarded as illustrative in nature and not as restrictive.
BEST AND VARIOUS MODES FOR CARRYING OUT INVENTION
The present invention is concerned with novel acyl derivatives of 4-demethylpenclomedine compounds represented by the formula:
and pharmaceutically acceptable salts thereof.
The acyl groups can be straight or branched chained, can be unsubstituted or substituted such as with halogen such as Cl, Br and I, and/or include 5 and 6 membered rings. The ring moiety can be a carbocycle or a heterocycle including a hetero atom such as O, S or N. Typically, the acyl group contains 1-12 carbon atoms.
Examples of such suitable acyl groups are the following, each of which has been evaluated for activity according to the present invention, and each has been characterized by mass spectroscopy:
Examples of pharmaceutically acceptable acid addition salts include those derived from mineral acids, such as hydrochloric, hydrobromic, phosphoric, metaphosphoric, nitric and sulfuric acids, and organic acids, such as tartaric, acetic, citric, malic, lactic, fumaric, benzoic, glycolic, gluconic, succinic, and arylsulfonic, for example p-toluenesulfonic acid.
It has been found according to the present invention that the acyl compounds of the present invention are surprisingly and advantageously useful in treating mammalian cancer, especially human cancer. The compounds of the present invention have been shown to exhibit generally superior activity in comparison to 4-demethylpenclomedine and penclomedine. Moreover, the compounds of the present invention are believed to possess reduced toxicity in comparison to both demethylpenclomedine and penclomedine (PEN).
It is further noted, as will be discussed below, that the acyl compounds of the present invention are not considered to be prodrug forms of DM-PEN. Both penclomedine (PEN) and DM-PEN are inactive as cytotoxic agents in vitro but must be metabolized to produce cytotoxicity, as demonstrated by their anticancer activity in vivo, which indicates that DM-PEN, as well as PEN, is a prodrug of the ultimate activated metabolite. The proposed mechanism by which PEN and DM-PEN exhibit cytotoxicity in vivo is shown in Scheme 1 and indicates that PEN and DM-PEN are on the same metabolic activation pathway, which includes a non-acylated, free radical activated for DNA crosslinking. In contrast, it is believed (Scheme 2) that the acyl derivatives (DM-ACYL-PEN) are converted via the liver to an acylated free radical (rather than a non-acylated free radical) and, as such, are not fully activated for DNA crosslinking but remain in a prodrug form as they exit the liver and enter the circulation. The partially activated acylated free radical is transported to cells via circulation and forms an adduct with nuclear DNA. Subsequently, the adduct is deacylated by general cellular esterases particularly in the tumor cell, which allows for in situ, full activation and possibly reduced generalized host toxicity in comparison to PEN and DM-PEN, both of which are fully activated in the liver for DNA adduction and crosslinking before being transported via circulation to tumor and non-tumor cells. Deacylation generates a 4-hydroxy moiety on the pyridine nucleus, which then tautomerizes via th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Acyl derivatives of 4-demethylpenclomedine, use thereof and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Acyl derivatives of 4-demethylpenclomedine, use thereof and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Acyl derivatives of 4-demethylpenclomedine, use thereof and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2856189

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.