Computer component cooling assembly

Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C361S689000, C361S695000, C361S707000, C361S697000, C165S080300, C165S185000, C174S016300

Reexamination Certificate

active

06377455

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to the field of computers and more specifically to the field of computer component cooling by conductive and convective removal of heat from components such as high speed hard disk drives.
2. Prior Art
Heat dissipation is a constant and significant problem in computers because some components, such as hard disk drives, are relatively sensitive to high temperature. The loss of a hard disk drive can be a catastrophic failure because of the loss of unique data with little, if any chance of recovery. Conventional desk top computers commonly employ a single fan to pull warm air out of the computer chassis. However, expanding memory storage capacity and increasing rotational speeds necessary for shorter access times, make hard disk drives both more sensitive to high temperatures and more likely to generate greater amounts of thermal energy. Thus, the problem of providing adequate heat removal is substantially compounded by the advent of larger capacity and faster mass storage devices. Unfortunately, one cannot simply add more fans because there is limited space in a computer chassis which is normally occupied by a motherboard, CD-ROM, floppy disk drive, power supply, modem, video card, sound card and other interface cards as well as interconnecting ribbon cables and connectors. Accordingly, any additional cooling capability must be designed to enhance cooling of heat sensitive components (i.e., hard disk drives) without requiring significantly more volume within the very confined space within a computer chassis.
A search of the relevant prior art has revealed the following issued U.S. Pat. Nos.
4,642,715
Ende
5,220,485
Chakrabarti
5,339,214
Nelson
5,440,450
Lau et al
5,510,954
Wyler
5,535,094
Nelson et al
5,576,932
Bishop et al
5,596,483
Wyler
5,612,852
Leverault et al
5,623,597
Kikinis
5,638,895
Dodson
5,650,912
Katsui et al
Of the foregoing patents the following appear to be the more pertinent:
U.S. Pat. No. 5,612,852 to Leverault et al is directed towards a compact housing for a computer workstation. FIG. 1 illustrates a front perspective view of the workstation compact housing 20. FIG. 3 is an exploded perspective view of the structural heat sink 34 of the housing, including horizontal base heat sink 34A and a vertical tower heat sink 34B. The structural heat sink 34 conductively removes heat from heat-generating functional elements within the housing 20 and distributes the heat to other regions of the structural heat sink 34. The horizontal base heat sink 34A includes a hard disk drive receptacle
38
. The structural heat sink 34 is formed of metal, preferably aluminum. FIG. 6 is a front perspective view of the structural heat sink 34 with a hard disk drive 70 positioned therein. The hard disk drive 70 is positioned within the receptacle 38 and thereby allows the hard disk drive 70 to be in a stationary and secure low center of gravity position that is minimally affected by incidental jostling of the housing 20. The receptacle 38 and housing 36 are preferably formed of aluminum and thereby serve to conduct heat away from the elements positioned therein.
FIG. 7
illustrates the horizontal vented exterior skin
80
, a rear vertical vented exterior skin 82 and a front vertical vented exterior skin 84.
U.S. Pat. No. 4,642,715 to Ende is directed towards an environmental conditioning and safety system for disk-type mass memories. FIGS. 1 and 2 illustrate an environmental conditioning and safety system (ECSS) for disk-type mass memories
10
. ECSS 10 is mounted, as shown in the drawings, directly on the generally rectangular cover plate 12 of a disk housing containing rotating disks 14 as well as read/write heads and their actuating assemblies. Cover plate 12 is preferably fabricated of metal, and most preferably is an aluminum alloy casting. As shown in FIGS. 4-6, ECSS 10 includes means for exchange of air between the head/disk compartment 22 and the surrounding atmosphere. The air exchange means includes an air exchange manifold 24 and a removable manifold cover 26. The air exchange means of ECSS 10 also includes air intake means, preferably comprising a pair of air inlet check valves 32, 34, as well as air exhaust means, preferably comprising an air outlet check valve 36. ECSS 10 also includes means for dissipation of heat, which in the preferred embodiment comprises ribs or fins which are formed integrally with cover plate 12. As shown in FIG. 2, a plurality of fins 104 may be arranged in parallel, spaced relation along the exterior of cover plate 12, where they act to transfer heat generated within head/disk compartment 22 to the outside environment, to be dissipated by natural or forced air cooling.
U.S. Pat. No. 5,650,912 to Katsui et al is directed towards a heat sink for cooling a heat producing element and application. FIGS. 2 to 4B shown the heat sink H. The heat sink H comprises a heat sink body 1 made of material such as aluminum, having a good heat conductivity, and a fan assembly 2 such as a microfan for air-cooling the heat sink body 1. The heat sink body 1 comprises a fixing wall 4 whose back is mounted on a heat producing element 3, and a top plate 29 supported by upright rectangular bar 7A protruding from four corners of the fixing wall 4, respectively. Ventilation pads 5 are formed between the top plate 29 and the fixing wall 4 and open to the sides of the heat sink H. The center of the top plate 29 has a circular hole serving as a fan receiving recess 30 with the fixing wall 4 serving as the bottom thereof. The set of radiating fins 6 shaped like a comb are formed over the top plate 29 and a set of radiating fins 4
a
also shaped like a comb are formed over the fixing wall 4.
U.S. Pat. No. 5,535,094 to Nelson et al is directed towards an integrated circuit package with an integral heat sink and fan. FIGS. 2 and 3 illustrate module 12, which includes a cooling subsystem 22 that is mounted to an integrated circuit package 24. The package 24 typically contains an integrated circuit 26, although the package 24 may contain other electronic devices. The cooling subsystem 22 includes a heat sink 28 which is attached to the top surface of the package 24. The heat sink 28 typically has a plurality of walls 30 separated by a plurality of channels 32. Heat sink 28 is typically constructed from a thermally conductive material such as aluminum or copper. The heat generated by the integrated circuit 26 conducts through the package 24 and into the heat sink 28. Mounted to the heat sink 28 is a blower 34 which has an air intake port 36 and an exhaust port 38. The blower 34 generates a stream of air that flows from the exhaust port 38.
U.S. Pat. No. 5,638,895 to Dodson is directed towards a twin fan cooling device. As shown in the Figures, cooling device 10 is mounted upon an electronic component, such as a semiconductor component or a processor 90 that is sensitive to heat. Processor 90 is plugged into socket 95. Cooling device 10 generally comprises a heat sink 20 and a plurality of fans 110, such as left fan 110L and right fan 110R. Heat sink 20 may be constructed out of any suitable material having a high coefficient of thermal conductivity, such as aluminum or copper or their alloys. Heat sink 20 generally comprises a base plate 22 and a number of heat-dissipating fins 70. Bottom 24 of base plate 22 includes a contact surface 26 adapted for substantial surface contact with the heat-emitting surface 92 of the electronic component 90.
Based upon the foregoing, it can be observed that all of the relevant prior art fails to provide an efficient cooling mechanism which adequately resolves the need of increased heat dissipation removal without any significant increase in the need for space within an existing computer chassis.
SUMMARY OF THE INVENTION
The present invention provides increased cooling for hard disk drives and other temperature-sensitive computer components, but in a manner which is extremely space efficient. More specifically, in the present invention, the conventional rai

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Computer component cooling assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Computer component cooling assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Computer component cooling assembly will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2849199

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.