Concentration of liquid products

Food or edible material: processes – compositions – and products – Processes – Preparation of product which is dry in final form

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C159S045000, C159S047100, C426S491000

Reexamination Certificate

active

06335045

ABSTRACT:

INTRODUCTION
The present invention relates to a method for concentrating liquid products, such as whey, in particular by vacuum evaporation, as well as a method for crystallisation and drying of the concentrated product.
Furthermore, the present invention relates to a system for concentrating liquid products, and a system for converting a liquid whey product into powder of high quality, such as a free-flowing, non-caking powdery product.
BACKGROUND
Whey is the liquid by-product of cheese and casein production that remains after the selective coagulation of the casein. Whey contains all of the water-soluble constituents of the milk along with whey proteins, such a lactoglobulins, lactose and some fat.
In the present contest the term whey is used for products selected from acid whey, sweet whey, salt whey, demineralised whey, whey protein fractions, lactose, pure lactose, mother-liquor from lactose crystallisation and similar products.
Permeate is in the present context that portion of a liquid that passes through a membrane when milk or whey is pumped through utltrafiltration systems.
Depending on origin, whey contains 5.5-6.5% total solids, wherein 0.7-0.9% protein, 0.05% fat, 4.2-4.6% lactose and 0.5-1.0% ash. Correspondingly, depending upon origin, permeate contains 4.0-6.0% total solids, wherein 0.2-0.3% protein, 3.3-5.0% lactose and 0.5-0.7% ash.
Concentrated, dried whey products are used for various purposes, such as ingredient in foodstuff for human and animal consumption.
PRIOR ART
In prior art several processes are known for converting liquid products, such as whey and permeate into free-flowing, non-caking powdery products.
In these known processes the liquid product is initially concentrated as much as possible, such as in a multiple effect falling film tubular evaporator. Thereby a concentration of whey up to 50-65% of total solids (TS) can be obtained.
This liquid product with 50 to 65% total solids may then—in a process commonly carried out by industry—immediately after evaporation be cooled slowly batchwise in large tanks provided with slow moving agitators for crystallisation of lactose. After crystallisation the concentrate is spray dried to its final moisture content and cooled in a fluid bed. (Masters, Spray Drying Handbook, 4 ed. 1985, p.596)
Another similar prior art process provides multiple crystallisation stages. (Masters, Spray Drying Handbook, 4 ed. 1985, p.597, FIGS. 15,12). A first crystallisation stage is obtained in large tanks as just described above. The concentrate is then spray dried to a moisture content of about 10 to 12% and the moist powder is left on a continuous belt conveyer for final crystallisation. The product is then milled and dried to its final moisture in a fluid bed. In this way a, free flowing, non-caking powder may be obtained.
In a more recent described procedure (U.S. Pat. No. 5,006,204, Niro Atomizer) the belt is substituted by a slowly rotating disk to receive partially dried whey powder from the spray dryer and deliver it to the fluid bed while permitting time for crystallisation.
The mentioned prior art processes all have several drawbacks. First, the energy efficient multiple effect evaporation process can only be used to concentrate the whey to 50 to 65% TS while the rest of the water removal requires a less energy-efficient air dryer.
Second, the known processes put severe limits to the operator's choice process parameters: It is well known to the person skilled in the art of multiple effect evaporators, that relatively high product temperatures towards the end of the concentration process are desirable, because they effectively reduce the content of micro-organisms and reduce viscosity. However, the same relatively high product temperatures promote the formation of Maillard reaction products and causes unacceptable browning and discoloration of the final product.
It is also well known, that a solution of lactose in water is able to form a super saturated solution up till approx. 2 times its solubility. This limit is already met in prior art evaporators and attempts to produce concentrates with higher total solids by using acceptable low temperature levels will therefore unavoidably lead to formation of large amounts of lactose crystals within the evaporator. This leads to scaling and very high viscosities and unpumpable products.
Third, the prior art dictates use of belts, rotating disks or discontinuously-operating crystallisation tanks, i.e. large, space and labour requiring equipment.
EP 205 601 (APV Anhydro) describes yet another process for production of a substantially free-flowing, non-caking powdery product from whey, whereby the whey is concentrated to 75% TS in vacuum evaporators. Thereafter the concentrate is passed once through a heat exchanger for cooling and crystallisation. The whey paste, which now has a high content of alpha monohydrate lactose, is fed to a Spin Flash dryer which converts the paste into a dry non-caking powder. The Spin Flash dryer is described in e.g. EP 141403 (APV Anhydro)
It has been found, however, that the whey paste from the evaporator in this process becomes extremely high viscous and very difficult to disintegrate in the spin flash dryer at elevated temperatures. Therefore, this process only allows for relatively low drying temperatures, which makes it very energy inefficient. The process has not been implemented by the whey-processing industry.
Therefore, since long the whey and permeate industry has an unfulfilled demand for a new process for converting liquid products, such as whey and permeate into a substantially free-flowing, non-caking powdery product, and which process is more energy efficient than the prior processes implemented by industry and at the same time provides an apparatus requiring much lesser building volume than the previous apparatuses.
SUMMARY OF THE INVENTION
The present invention relates to a method for concentration of a liquid product said liquid product having a dry solid content of at least 40% and said liquid product comprising crystallizable components, comprising the steps of heating the liquid product to a temperature above the crystallisation temperature of the liquid product in a heat exchanger, transferring the heated liquid product to a separator, flash separating volatile components from said heated liquid product and obtaining a liquid concentrate of the liquid products. By the present invention it has been possible to concentrate the liquid product to a very high concentration of solids, avoiding crystallisation of the liquid product during heating and separation. By the term “crystallisation of the liquid product” is meant crystallisation of crystallizable components in the liquid product. Furthermore, by the present invention it is possible to concentrate a liquid product having a high starting content of solids, i.e. at least 40% of solids. The content of solids relates to the content of total dry solids (TS) as described below. Accordingly, the present invention offers a cost-effective method of concentrating a liquid already having a high content of solids. The method is particularly effective to apply after state of the art concentration processes described above and before drying processes.
The crystallisation temperature is depending on the concentration of solids in the liquid product. By the term “a temperature above crystallisation temperature” is meant the temperature at which substantially no crystallisation occurs when the liquid product is flowing in the concentration system, at the predetermined solid concentration of the liquid product. In particular substantially no formation of x-lactose crystals occurs when the liquid product is heated to the temperature above crystallisation temperature.
In particular the present method may be applied for concentration of liquid whey products, whey products being as defined elsewhere in the description.
In the present context the term “liquid product” is meant to define the starting material fed into the concentration system, whereas the term “liquid concentrate” is meant do

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Concentration of liquid products does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Concentration of liquid products, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Concentration of liquid products will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2847756

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.