Movable instrument panel within a cockpit of an aircraft

Aeronautics and astronautics – Aircraft structure – Passenger or crew accommodation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C244S12200B, C244S1220AG, C244S129100

Reexamination Certificate

active

06419188

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of Invention
This invention relates generally to a moveable panel within a cockpit of an aircraft and, more particularly, utilizing a moveable panel housing instruments over the lap of a pilot within an escape capsule to economically design the escape capsule that is small enough to eject the entire escape capsule from the aircraft to safely eject the pilot from the aircraft.
2. Description of the Related Art
There are number of design criteria for designing an aircraft. One of the more important criteria is the weight, i.e., designing a lightest possible aircraft without sacrificing the performance. Another design criteria in the case of fighter jet is that the pilot must have at least 15° to 18° of visibility below the horizontal plane through the canopy of the aircraft (the 18° requirement). However, the front console having a certain height is in line with the pilot's view so that the pilot must sit a substantially upright position to see over the front console to satisfy the 18° visibility requirement. In other words, there is a limit as to how far a pilot's seat can lean back. With today's cockpit design, because of the height level of the front dashboard, the pilot seat can only lean back about 15° to 30° from the vertical plane. This is generally due to limited space within the cockpit to install all of the instruments and the pilot seat, in order to reduce the weight of the cockpit. However, there are several shortcomings to having a pilot seat that can only lean back about 30°. One of the shortcomings is that the profile and frontal area of a canopy enclosing the cockpit is limited by the upright position of the seat. This means that the profile of the canopy can not be lowered to reduce the drag on the cockpit. Moreover, higher canopy profile also means more space within the cockpit to heat and cool the air, which means more powerful and heavier auxiliary equipment to control the air within the cockpit.
Another shortcoming with the pilot seat that can only lean back about 30° is that the pilot is subject to more gravity (G) force than a seat that can lean back further. That is, as the pilot sits in more of an upright position, pilot's blood becomes so heavy that the hydraulic pressure produced by the pilot's heart can not compensate for the blood draining out of the pilot's head. Under such circumstances, the pilot may blackout. For example, even with an antigravity suit, many pilots may take about 8 Gs before blacking out. On the other hand, a pilot seat that can lean back beyond 30° would decrease the blood draining out of the pilot's head because the pilot's head and heart are in a more level position. Put differently, when the pilot is sitting in a substantially upright position there may be a vertical difference of about 2 feet between the head and the heart of the pilot; whereas in a lay back position, i.e., beyond 30°, there may be a difference of about 6 inches. In other words, it is much easier for the heart pump blood 6 inches vertically than 2 feet to pilot's head, so that the pilot can handle greater G force. A pilot's ability to handle greater G force would allow the pilot to make more aggressive maneuvers, which could make the difference between winning or losing a dogfight in the air.
In an emergency situation, a pilot may have to eject from the cockpit. However, there is a limit as to how fast the pilot can be ejected from the cockpit because the pilot's spine can only take so much G force before the disk in between the vertebrae in the spine will rupture. On the other hand, as discussed above, a pilot seat that can lean further back would allow the pilot to handle greater G force so that the pilot can escape from the cockpit faster.
Moreover, during the ejection every split second counts. However, before a pilot can be ejected, pilot's arms and legs are pulled in by a strap means and held close to the seat so that the arms and legs do not get sheared off. Also, the canopy has to be ejected or shattered before the pilot can be ejected which takes up additional valuable time. Also, once ejected, pilots are exposed to the elements such that it may cause serious injury to the pilots. For example, pilots are limited to ejection at speeds below 700 mph; otherwise the impact from the wind may kill them. Furthermore, pilots may be subject to thunder, hail, and, at high altitudes, subject to severe cold and lack of oxygen.
Therefore, there still is a need for a pilot seat that can lean beyond 30° from the vertical plane to allow the pilot to take more G force, without increasing the size of the cockpit. Moreover, in the case of an emergency, a need to eject the pilot from the fighter jet faster and more safely.
BRIEF SUMMARY OF THE INVENTION
One of the features of the present invention is to recline the pilot seat further back beyond 60° from the vertical plane. Reclining the pilot seat further back has a number of advantages, such as being able to lower the profile and frontal area of the cockpit to reduce the drag and the weight of the aircraft and the cockpit. Moreover, since the pilot seat can learn further back, the pilot can handle greater G-forces because the force being applied to the pilot is more evenly distributed throughout the pilot's body.
To accomplish the above feature, the height of the front console sometimes referred to as the “coming” is lowered by moving the instruments from the front console to a movable panel that extends across the lap of a pilot. By lowering the coming, the pilot seat can be further reclined and still maintain the 18° view requirement over the now lowered coming. Furthermore, the reclined position reduces the frontal area, and the profile of the cockpit, which reduces drag. Moreover, weight is reduced due to the fact that the cockpit volume is smaller and less auxiliary equipment is required to heat or cool air within the cockpit. The reclined position also allows the pilot to endure greater G-forces since the pilot is in a more leveled position.
Another feature of the present invention is to provide an escape capsule for fighter jets that provides safer means of ejecting a pilot. This feature is also accomplished in part by the movable panel, which efficiently utilizes the space around the pilot so that a compact escape capsule may be designed to eject the entire escape capsule from the aircraft with a pilot(s) safely inside the capsule. That is, the compact design of the capsule is facilitated by the fact that (1) the seat may reclined further by about 60° or more, which lowers the profile and frontal area of the capsule; (2) placing the movable panel over the lap or thighs of the pilot allows knee caps and toes to be moved up to the pilot's vision lines so that the height of the capsule may be reduced; and (3) lowering the profile and reducing the length of the capsule, of course, reduce the weight of the capsule so that it is more feasible to eject the capsule from the aircraft. There are numerous advantages to such an ejection system, such as: (1) the pilot may now eject at higher speed and/or altitude; (2) faster ejection time because there is no need to retract the pilot's arms and legs, and the pilot can tolerate greater G-forces during ejection; (3) protection from extreme elements such as cold, rain, hail, lightning, lack of air supply, and the explosion of the airplane, and no need to removed the canopy before ejecting the pilot; (4) protection the pilot during landing after the ejection; and (5) smaller environmental loads due to the smaller volume of the capsule, i.e., smaller auxiliary equipment can be used.
In accordance with one aspect of the present invention, these and other features are accomplished by providing a panel having an edge, the edge of the panel pivotally couple to a capsule, wherein the panel pivots between a first position and a second position, wherein the panel houses at least a portion of the instruments in the capsule, wherein: in the first position, the panel is in sub

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Movable instrument panel within a cockpit of an aircraft does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Movable instrument panel within a cockpit of an aircraft, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Movable instrument panel within a cockpit of an aircraft will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2846388

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.