Nozzle airfoil having movable nozzle ribs

Rotary kinetic fluid motors or pumps – Including thermal expansion joint – Radially sliding

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C415S115000, C415S191000, C416S233000

Reexamination Certificate

active

06386827

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to nozzle airfoil design, and more particularly, to an improved airfoil to airfoil rib joint for reducing thermal stresses at that junction.
Gas turbines typically include a compressor section, a combustor and a turbine section. The compressor section draws in ambient air and compresses it. Fuel is added to the compressed air in the combustor and the air fuel mixture is ignited. The resultant hot fluid enters the turbine section where energy is extracted by turbine blades, which are mounted to a rotatable shaft. The rotating shaft drives the compressor in the compressor section and drives, e.g., a generator for generating electricity or is used for other functions. The efficiency of energy transfer from the hot fluid to the turbine blades is improved by controlling the angle of the path of the gas onto the turbine blades using non-rotating, airfoil shaped vanes or nozzles. These airfoils direct the flow of hot gas or fluid from a nearly parallel flow to a generally circumferential flow onto the blades. Since the hot fluid is at very high temperature when it comes into contact with the airfoil, the airfoil is necessarily subject to high temperatures for long periods of time. Thus, in conventional gas turbines, the airfoils are generally internally cooled, for example by directing a coolant, which is compressed air in some systems and/or nozzle stages and steam in others, through internal cooling cavities in the airfoil.
Inside the airfoil, ribs are conventionally provided to extend between the convex and concave sides of the airfoil to provide mechanical support between the concave and convex sides of the airfoil. The ribs are needed to maintain the integrity the nozzle and reduce ballooning stress of the cavities. The ribs concurrently define at least part of the coolant flow path(s) through the airfoil. Thus, during engine operation, the internal ribs will be at a temperature level close to that of the coolant flowing through the airfoil, while the peripheral airfoil metal will generally be at a much higher temperature level. The mismatched temperatures result in high thermal stresses at the junctures of the ribs and the airfoil sidewalls. This high stress level combined with the high operating temperature results in fast deterioration of the vane at that area and thus deteriorated component life.
BRIEF SUMMARY OF THE INVENTION
The invention is embodied in a vane or nozzle airfoil structure in which one or more of the nozzle ribs are connected to the airfoil side walls in such a way that the ribs provide the requisite mechanical support between the concave side and convex side of the airfoil but are not locked in the radial direction of the vane or nozzle assembly, longitudinally of the vane or airfoil. This configuration minimizes the stress caused by the mismatch of the material temperature between the airfoil outer, side walls and the support ribs.
The mechanical support ribs may be bi-cast onto a preformed nozzle airfoil side wall structure or fastened to the airfoil by an interlocking slide connection and/or welding. This substantially independent formation and mechanical interconnection enables some play in the radial direction of the nozzle assembly, longitudinally of the airfoil. By attaching the nozzle ribs to the nozzle airfoil metal in such a way that allows play longitudinally of the airfoil, the temperature difference induced radial thermal stresses at the nozzle airfoil/rib joint area are reduced while maintaining proper mechanical support of the nozzle side walls.


REFERENCES:
patent: 3095180 (1963-06-01), Clarke et al.
patent: 3171631 (1965-03-01), Aspinwall
patent: 3369792 (1968-02-01), Kraimer et al.
patent: 3606580 (1971-09-01), Kaufman, Sr.
patent: 3619077 (1971-11-01), Wile et al.
patent: 4153386 (1979-05-01), Leogrande et al.
patent: 5203873 (1993-04-01), Corsmeier et al.
patent: 5342172 (1994-08-01), Coudray et al.
patent: 5358379 (1994-10-01), Pepperman et al.
patent: 5813832 (1998-09-01), Rasch et al.
patent: 1 323 883 (1973-07-01), None
patent: 2 106 996 (1983-04-01), None
patent: 58-214602 (1983-12-01), None
patent: 61-51124 (1986-11-01), None
“39thGE Turbine State-of-the-Art Technology Seminar”, Tab 1, ““F” Technology—the First Half-Million Operating Hours”, H.E. Miller, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 2, “GE Heavy-Duty Gas Turbine Performance Characteristics”, F. J. Brooks, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 3, “9EC 50Hz 170-MW Class Gas Turbine”, A. S. Arrao, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 4, “MWS6001FA—An Advanced-Technology 70-MW Class 50/60 Hz Gas Turbine”, Ramachandran et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 5, “Turbomachinery Technology Advances at Nuovo Pignone”, Benvenuti et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 6, “GE Aeroderivative Gas Turbines—Design and Operating Features”, M.W. Horner, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 7, “Advance Gas Turbine Materials and Coatings”, P.W. Schilke, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 8, “Dry Low NOxCombustion Systems for GE Heavy-Duty Turbines”, L. B. Davis, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 9, “GE Gas Turbine Combustion Flexibility”, M. A. Davi, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 10, “Gas Fuel Clean-Up System Design Considerations for GE Heavy-Duty Gas Turbines”, C. Wilkes, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 11, “Integrated Control Systems for Advanced Combined Cycles”, Chu et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 12, “Power Systems for the 21st Century “H” Gas Turbine Combined Cycles”, Paul et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 13, “Clean Coal and Heavy Oil Technologies for Gas Turbines”, D. M. Todd, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 14, “Gas Turbine Conversions, Modifications and Uprates Technology”, Stuck et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 15, “Performance and Reliability Improvements for Heavy-Duty Gas Turbines,”J. R. Johnston, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 16, “Gas Turbine Repair Technology”, Crimi et al, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 17, “Heavy Duty Turbine Operating & Maintenance Considerations”, R. F. Hoeft, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 18, “Gas Turbine Performance Monitoring and Testing”, Schmitt et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 19, “Monitoring Service Delivery System and Diagnostics”, Madej et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 20, “Steam Turbines for Large Power Applications”, Reinker et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 21, “Steam Turbines for Ultrasupercritical Power Plants”, Retzlaff et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 22, “Steam Turbine Sustained Efficiency”, P. Schofield, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 23, “Recent Advances in Steam Turbines for Industrial and Cogeneration Applications”, Leger et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 24, “Mechanical Drive Steam Turbines”, D. R. Leger, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 25, “Steam Turbines for STAG™ Combined-Cycle Power Systems”, M. Boss, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 26, “Cogeneration Application Considerations”, Fisk et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 27, “Performance and Economic Considerations of Repowering Steam Power Plants”, Stoll et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Se

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nozzle airfoil having movable nozzle ribs does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nozzle airfoil having movable nozzle ribs, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nozzle airfoil having movable nozzle ribs will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2840667

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.