Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Compositions to be polymerized by wave energy wherein said...
Reexamination Certificate
1999-09-24
2002-03-26
Berman, Susan W. (Department: 1711)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Compositions to be polymerized by wave energy wherein said...
C522S014000, C522S016000, C522S063000, C522S170000, C522S182000, C522S103000, C526S204000, C252S586000
Reexamination Certificate
active
06362248
ABSTRACT:
TECHNICAL FIELD
The present invention relates to a photochromic polymerizable composition that gives a cured product exhibiting excellent photochromic action, and to a photochromic material containing the photochromic polymerizable composition.
BACKGROUND ART
Photochromism is a phenomenon which is drawing attention in these several years and stands for a reversible action in that the color of a given compound quickly changes when it is irradiated with light containing ultraviolet rays, such as sunlight or light of a mercury lamp, and the compound assumes the initial color when it is no longer irradiated with light and is placed in a dark place. The compound having such a property is called photochromic compound. Compounds having various colors have heretofore been synthesized accompanied, however, by a problem in regard to photochromism resistance when the compounds are repetitively subjected to the reversible change.
Therefore, there have been developed photochromic compounds having improved photochromism resistance, such as oxazine-type photochromic compounds (hereinafter simply referred to as oxazine compounds), fulgimide-type photochromic compounds (hereinafter simply referred to as fulgimide compounds) and chromene-type photochromic compounds (hereinafter simply referred to as chromene compounds) (U.S. Pat. Nos. 4,882,438, 4,960,678, 5,130,058, Japanese Unexamined Patent Publication (Kokai) No. 288830/1987, U.S. Pat. No. 5,106,998, Japanese Unexamined Patent Publication (Kokai) Nos. 28154/1990, 11074/1991, 133988/1991).
These photochromic compounds exhibit excellent photochromism resistance. In particular, the above-mentioned chromene compounds are, generally, little deteriorated by light. When continuously irradiated with sunlight or light close to sunlight, these chromene compounds little lose performance for developing color and exhibit excellent photochromism resistance.
However, when it is attempted to obtain a photochromic material such as photochromic lenses for spectacles by mixing the chromene compound to the polymerizable monomer to polymerize them, a problem often occurs in the obtained photochromic material though there arouses no particular problem in the photochromic compound itself. That is, according to the study conducted by the present inventors, it became obvious that when a particular chromene compound is used as a photochromic compound for a polyfunctional (meth)acrylate monomer that is widely used as a monomer for obtaining a photochromic material such as lenses for spectacles, it is not allowed to obtain a photochromic material having good photochromism resistance, and the photochromic material itself develops a color (hereinafter often referred to as “initial color). This is a serious problem for the photochromic material such as lenses of spectacles which strongly reflect the likings of the users. Therefore, it has been desired to provide a photochromic material that does not exhibit initial color.
In order to improve the photochromism resistance of the photochromic material containing a chromene compound, PCT laid-open specification WO 96/37576 discloses a method which adds a hindered aminoether-type photostabilizer to a thermoplastic resin such as polyvinyl chloride or polycarbonate containing a benzochromene compound. The inventors have added the above-mentioned particular chromene compound to the polyfunctional (meth)acrylate that has been placed in the market together with the above-mentioned hindered aminoether-type photostabilizer. However, the photochromism resistance was not improved to a sufficient degree, and the development of the initial color could not be suppressed. (Disclosure of the Invention)
The object of the present invention is to solve the problem of initial color specific to the photochromic material obtained by curing the photochromic polymerizable composition that contains a particular chromene compound and a polyfunctional (meth)acrylate monomer, and to solve the problem of decrease in the photochromism resistance.
The present invention is proposed in order to accomplish the above-mentioned object, and is based on a discovery that an initial color is little exhibited and a large photochromism resistance is obtained by a photochromic material that is obtained by curing a photochromic polymerizable composition formed by adding an epoxy compound to the above-mentioned photochromic polymerizable composition that contains a particular chromene compound and a polyfunctional (meth)acrylate monomer.
That is, the present invention is concerned with a photochromic polymerizable composition comprising:
a) a polyfunctional (meth)acrylate monomer;
b) at least one kind of a chromene compound selected from the group consisting of a chromene compound represented by the following general formula (1),
wherein a divalent group represented by the following general formula (2),
is a divalent aromatic hydrocarbon cyclic group or an unsaturated heterocyclic group that may have a substituent (and where Y is a corresponding divalent organic group), said divalent aromatic hydrocarbon cyclic group or said unsaturated heterocyclic group having, as a substituent, at least one or more substituted or unsubstituted amino groups or substituted or unsubstituted nitrogen-containing heterocyclic groups having, as a hetero atom, a nitrogen atom that is bonded to said aromatic hydrocarbon cyclic group or said unsaturated heterocyclic group,
R1 and R2 may the same or different and are hydrogen atoms, halogen atoms, alkyl groups or aralkyl groups, R3 and R4 may be the same or different and are alkyl groups, aryl groups or aromatic heterocyclic groups that may have a substituent, and wherein R3 and R4 may be bonded to each other to form a ring,
a chromene compound represented by the following general formula (3),
wherein R5 and R6 may be the same or different and are hydrogen atoms, halogen atoms, alkyl groups or aralkyl groups, R7 and R8 may be the same or different and are aryl groups or aromatic heterocyclic groups that may have a substituent, and wherein R7 and R8 may be bonded to each other to form a ring and at least either one of R7 and R8 has, as a substituent, at least one or more substituted or unsubstituted amino groups, or substituted or unsubstituted nitrogen-containing heterocyclic groups having, as a hetero atom, a nitrogen atom bonded to a carbon atom of said aryl group, aromatic heterocyclic group or in the ring formed by the bonding of the groups R7 and R8,
R9 is a primary, secondary or tertiary alkyl group, a substituted or unsubstituted amino group, a substituent other than the nitrogen-containing heterocyclic group that has, as a hetero atom, a nitrogen atom bonded to a benzochromene ring, or a hydrogen atom,
R10 is a substituted or unsubstituted amino group on the sixth position, seventh position, eighth position, ninth position and/or tenth position of the benzchromene ring, or a substituent other than the nitrogen-containing heterocyclic group having, as a hetero atom, a nitrogen atom bonded to the benzochromene ring,
a is an integer of 0 to 3 representing the number of the substituents, and when a is 2 or larger, the groups R10 may be the same or different,
and a chromene compound represented by the following general formula (4),
wherein R11 and R12 may be the same or different and are hydrogen atoms, halogen atoms, alkyl groups or aralkyl groups, R13 and R14 may be the same or different and are aryl groups or aromatic heterocyclic groups that may have a substituent and wherein R13 and R14 may be bonded to each other to form a ring, and at least either one of R13 and R14 has, as a substituent, at least one or more substituted or unsubstituted amino groups, or substituted or unsubstituted nitrogen-containing heterocyclic groups having, as a hetero atom, a nitrogen atom that is bonded to a carbon atom of said aryl group, aromatic heterocyclic group or in the ring formed by the bonding of the groups R13 and R14, R15 is a substituted or unsubstituted amino group on the fifth position, sixth position, seventh position, eighth posit
Hara Tadashi
Kawabata Yuichiro
Momoda Junji
Nagoh Hironobu
Berman Susan W.
Tokuyama Corporation
LandOfFree
Photochromic polymerizable composition does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Photochromic polymerizable composition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Photochromic polymerizable composition will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2826997