Endoscopic infusion needle having dual distal stops

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06336915

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to endoscopic medical devices. More particularly, the invention relates to an endoscopic infusion device having a needle which is movable within an outer tube from a first position to a second position.
2. State of the Art
Endoscopic infusion needle devices are used in the treatment of various digestive disorders to control bleeding or potential bleeding lesions in the esophagus, stomach, duodenum, and colon. The state of the art devices include a relatively long catheter, typically having an overall length of about 200 cm, within which an inner injection tube having a distal injection needle is slideably disposed. A proximal actuating handle is coupled to the catheter and the injection tube for moving one relative to the other. Fluid access to the injection tube is typically provided via a luer connector on the handle. In addition, a second luer connector is usually provided on the handle for introducing a saline irrigant into the annular space between the catheter and the injection tube.
Endoscopic infusion needle devices are typically delivered to an injection site through the lumen of an endoscope. In order to protect the lumen of the endoscope from damage, the handle of the infusion needle device is manipulated to withdraw the distal injection needle into the lumen of the catheter before inserting the device into the endoscope. This is important to prevent exposure of the sharp point of the injection needle as the device is moved through the lumen of the endoscope. When the distal end of the infusion needle device is located at the injection site, its handle is again manipulated to move the injection needle distally out of the lumen of the catheter. When advanced to the most distal position, the exposed portion of the injection needle should be approximately 4-6 mm in length. The injection procedure is often preceded by washing the site with saline in order to clear the field of view before piercing the injection site with the needle. The saline wash is delivered via the annular space between the catheter and the injection tube. After the injection site has been pierced, a sclerosing agent or vasoconstrictor composition is delivered through the injection tube and the needle into the injection site. The procedure may be performed at several injection sites before the injection needle device is removed from the endoscope. Between injections, however, the needle is withdrawn into the catheter to prevent inadvertent punctures or needle pricks.
The state of the art endoscopic infusion needle devices all suffer from similar design problems which are related to the movement of the needle into and out of the catheter. For example, it is difficult to assure that the injection needle will remain within the catheter when it is withdrawn, or to assure that the injection needle will not puncture the wall of the catheter during movement of the device through the endoscope. The reason for these problems is related to the dimensions of the device and the often tortuous path provided by the lumen of the endoscope. As mentioned above, the desired relative movement of the needle and the catheter is only on the order of 10 mm, whereas the overall length of the device is on the order of two hundred times that amount. Thus, the movement of the proximal ends of the catheter and the injection tube by an amount on the order of 10 mm cannot assure that the distal ends of the catheter and the injection tube will move exactly the same amount without requiring exacting tolerances. This issue is exacerbated by the tortuous path taken through the endoscope by the device. This tortuous path also causes the injection needle to be deflected relative to the axis of the catheter such that the sharp point of the needle touches the inner wall of the catheter. As the device is moved through the endoscope, it is thereby possible for the injection needle to puncture the catheter wall, rendering the device inoperative, and possibly damaging the lumen of the endoscope.
SUMMARY OF THE INVENTION
It is therefore an object of the invention to provide an endoscopic infusion needle device which assures that the distal ends of the catheter and the injection tube can be moved relative to each other between two well-defined positions.
It is also an object of the invention to provide an endoscopic infusion needle device which assures that the sharp end of the injection needle will not contact the inner wall of the catheter.
It is another object of the invention to provide an endoscopic infusion needle device which is inexpensive to manufacture.
It is still another object of the invention to provide an endoscopic infusion needle device which does not require exacting tolerances to assure the well-defined positions of the catheter and the injection tube.
In accord with these objects which will be discussed in detail below, the endoscopic infusion needle device of the present invention includes a relatively long catheter within which an inner injection tube having a distal injection needle is slideably disposed. A proximal actuating handle is coupled to the proximal ends of the catheter and the injection tube for moving one relative to the other, and distal stopping structures are provided on distal portions of the catheter and the injection tube. Fluid access to the injection tube is provided via a luer connector on the handle, and a second luer connector is provided on the handle for introducing a saline irrigant into the annular space between the catheter and the injection tube. According to one embodiment of the invention, the distal stopping structures include a rigid elongate skeletal structure which is inserted into the distal end of the catheter and which occupies a portion of the annular space between the injection tube and the catheter wall, and an annular band on a portion of the injection tube which resides within the skeletal structure. The skeletal structure is dimensioned such that it fits tightly within the cannula, allows irrigation fluid to pass through the annular space between the injection tube and the catheter and to exit the distal end of the catheter, and prevents the annular band from escaping through the proximal end or the distal end of the skeletal structure. In addition, the skeletal structure is dimensioned to maintain the injection needle in substantial axial alignment with the catheter. The annular band is located on the injection tube such that when the injection tube is moved proximally relative to the catheter, the distal end of the injection needle is safely housed within the skeletal structure when the annular band is stopped by the skeletal structure; and, when the injection tube is moved distally relative to the catheter, the distal end of the injection needle extends approximately 4-6 mm beyond the distal end of the skeletal structure when the annular band is stopped by the skeletal structure. According to other embodiments of the invention, two annular bands are provided on the injection tube and one or more stopping structures are provided within the cannula.
The distal stopping structure according to the invention provides a positive well-defined proximal stopping location and a positive well-defined distal stopping location for the injection needle. In addition, several embodiments of the stopping structure provide an axial alignment for the injection needle which prevents the needle from puncturing the catheter.
Additional objects and advantages of the invention will become apparent to those skilled in the art upon reference to the detailed description taken in conjunction with the provided figures.


REFERENCES:
patent: 3530785 (1970-09-01), Peters et al.
patent: 3774604 (1973-11-01), Danielsson
patent: 4373526 (1983-02-01), Kling
patent: 4627841 (1986-12-01), Dorr
patent: 4988339 (1991-01-01), Vadher
patent: 5141496 (1992-08-01), Dalto et al.
patent: 5281197 (1994-01-01), Arias et al.
patent: 5330501 (1994-07-01), Tovey et al.
patent: 5352206 (1994-10-01), Cushieri et al.
patent: 5356389 (1994-10-01), Wil

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Endoscopic infusion needle having dual distal stops does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Endoscopic infusion needle having dual distal stops, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Endoscopic infusion needle having dual distal stops will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2825379

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.