Technique for handling undesired data over a limited...

Multiplex communications – Communication techniques for information carried in plural... – Adaptive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S310000, C707S793000, C455S557000

Reexamination Certificate

active

06363082

ABSTRACT:

TECHNICAL FIELD
The present invention generally relates to the field of electronic networking environments. More particularly, the present invention relates to the field of limited bandwidth communication within networking environments.
BACKGROUND ART
Computers and other electronic devices (e.g., personal digital assistants) have become integral tools used in a wide variety of different applications, such as in finance and commercial transactions, computer-aided design and manufacturing, health care, telecommunication, education, etc. Computers along with other electronic devices are finding new applications as a result of advances in hardware technology and rapid development in software technology. Furthermore, the functionality of a computer system or other type of electronic device is dramatically enhanced by coupling these type of stand-alone devices together in order to form a networking environment. Within a networking environment, users may readily exchange files, share information stored on a common database, pool resources, and communicate via electronic mail (e-mail) and via video teleconferencing. Furthermore, computers or other types of electronic devices which are coupled to the internet provide their users access to data and information from all over the world.
It is appreciated that there are different types of electronic networking environments. One popular type of electronic networking environment is known as a local area network, typically referred to as a LAN. LANs connect multiple computer systems together such that the users of the computer systems have the ability to access the same information and share data. Additionally, another type of electronic networking environment is known as a wide area network, commonly referred to as a WAN. WANs also connect multiple computer systems together thereby enabling them to access and share the same data and information. But a WAN typically connects a much larger number of computer systems together compared to a LAN and typically the WAN also covers a more expansive amount of real estate (e.g., state, country, continent, etc.).
As mentioned above, several different types of electronic devices have the ability to be coupled to an electronic networking environment, such as a LAN or a WAN. For example, automated teller machines (ATMs) of commercial banks, desktop computer systems, credit card point of sale machines located within commercial stores and restaurants, portable (laptop) computer systems, computer navigation devices installed within automobiles, and personal digital assistants can all be coupled to electronic networking environments. It should be appreciated that some of the types of electronic devices which can be coupled to an electronic networking environment may have a very limited bandwidth within their respective communication channel.
For example, a personal digital assistant (commonly referred to as a PDA) can have a limited bandwidth within its communication channel when coupled to the internet by certain wireless communication links. It is appreciated that the personal digital assistant is a battery powered hand-held device that is used as an electronic organizer which has the capability to store a wide range of information that includes daily appointments, numerous telephone numbers of business and personal acquaintances, and various other information. Moreover, the personal digital assistant can also access information from the internet, as mentioned above. It should be appreciated that there are disadvantages associated with electronic devices (e.g., personal digital assistant) which have a limited bandwidth within their respective communication channel.
One of the disadvantages associated with electronic devices having limited bandwidth within their respective communication channel is that data requests may improperly time-out. For example, when a user of a limited bandwidth electronic device (e.g., personal digital assistant) cancels a previous request for data (such as a request for a web page) after the request has gone out from the device, typically a response to the requested data is returned to the requesting electronic device even though the request was canceled. In most situations, it is sufficient to simply ignore this returning canceled data since it is no longer relevant. However, on an electronic device having a limited bandwidth in its transport layer, this returning canceled data can fill up the available bandwidth of the communication channel thereby blocking or greatly delaying the response time of a current outstanding data request. To the higher level of software operating within the limited bandwidth electronic device, this large delay appears simply as if the network or server is being unresponsive to the current request for data, thereby resulting in the current request improperly timing-out causing the user inconvenience. This problem is particularly seen in systems that use very reliable but slow transport layers. In these systems, often a relatively uncomplicated (and inexpensive) universal datagram protocol (UDP) layer is used just below the port layer. The UDP layer does not have any communication complement for indicating its activity to higher level applications and it typically used to convey encoded audio/video information. When a UDP layer is dispensing with canceled data, often the application layer is totally unaware of this fact, causing improper data request time-outs as described above.
It should be appreciated that a request which improperly times-out can escalate the delay problem since the response to that requested data eventually returns to the limited bandwidth electronic device thereby further blocking or delaying its communication channel.
Therefore, one of the disadvantages associated with electronic devices having limited bandwidth within their respective communication channel is that data requests may improperly time-out. As such, during certain circumstances, limited bandwidth electronic devices can operate in an inefficient manner.
DISCLOSURE OF THE INVENTION
Accordingly, a need exists for a method and system for preventing an electronic device having limited bandwidth within its respective communication channel (e.g., transport layer) from improperly timing-out a data request. The present invention provides a method and system for preventing an electronic device having limited bandwidth within its respective communication channel from improperly timing-out a data request. Specifically, one embodiment in accordance with the present invention operates within an electronic system or device (e.g., personal digital assistant) which can be coupled to a networking environment. An embodiment of the present invention allows higher levels of software operating within an electronic system to directly communicate with and determine the current operation of lower levels of software. As such, a higher level of software is advantageously able to perform appropriate actions in response to activities being performed by a lower level of software. For example, the higher level of software is able to suspend its time-out of a delayed response to a data request after determining that the reason for the delay is due to the fact that there is a “log jam” caused by canceled data packets being processed by a transport layer while a UDP layer is currently discarding canceled data packets associated with a canceled data request. Therefore, one embodiment of the present invention enables electronic devices to operate more efficiently.
In another embodiment, the present invention includes an electronic system (e.g., personal digital assistant) having a processor, a bus and a memory unit. Furthermore, the electronic system further includes an application software layer. Additionally, the electronic system includes a port layer comprising a plurality of ports each for selective assignment to and communication with applications of the application software layer. Moreover, the electronic system includes a universal datagram protocol (UDP) layer coupled to communicate informatio

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Technique for handling undesired data over a limited... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Technique for handling undesired data over a limited..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Technique for handling undesired data over a limited... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2824670

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.