Multi-chip module having interconnect dies

Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C361S820000, C361S760000, C361S761000, C361S764000, C361S767000, C361S783000, C174S050510, C174S050510, C257S723000, C257S724000

Reexamination Certificate

active

06421254

ABSTRACT:

RELATED APPLICATIONS
This application is related in subject matter to U.S. application Ser. No. 08/208,586, entitled “Prefabricated Semiconductor Chip Carrier”, filed Mar. 11, 1994, and expressly incorporated by reference herein, and to U.S. application Ser. No. 08/487,103, entitled “Semiconductor Die Carrier Having Double-Sided Die Attach Plate”, filed Jun. 7, 1995, and expressly incorporated by reference herein. Furthermore, this application is related to several other patent applications which are commonly owned by the Assignee of this application. Those related applications are: U.S. Design Patent Application, Ser. No. 29/081,929 entitled Computer Cabinet, U.S. patent application, Ser. No. 08/970,503 entitled Cooling System for Semiconductor Die Carrier, U.S. patent application, Ser. No. 08/970,502 entitled Interface Optimized Computer System Architecture, and U.S. patent application, Ser. No. 08/970,434 entitled Decorative Panel for Computer Enclosure, all of which are hereby incorporated by reference.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a multi-chip module and, more particularly, to a multi-chip module that includes one or more interconnect dies for interconnecting integrated circuit (IC) dies in the multi-chip module and for interconnecting the IC dies to the leads of the multi-chip module.
2. Description of the Prior Art
Operation speed continues to be one of the main selling points for electronic systems, such as computers and other data processing equipment. Increases in operation speed lead to expanded capabilities in graphics, communications, and database applications, to name just a few. One way of increasing the operation speed of an electronic system is to increase the speed of the IC dies used in the electronic system. To date, a great deal of effort has been focused on developing improved designs and architectures for increasing the operation speed of the IC dies.
Several factors besides IC die design affect operation speed in modem electronic systems. For a given architecture, the temperature at which an IC die is operated affects its operation speed. In general, a cool IC die may be reliably operated at higher speeds than a hot IC die. Modern high speed dies have demanding cooling requirements, and future designs are likely to be even more demanding. Accordingly, the ability to cool IC dies is an important factor in obtaining reliable, high speed operations of electronic systems.
In addition, as the operation speeds of IC dies increase, the propagation delay of signals passing between IC dies in the electronic system becomes significant. Propagation delay increases as the length of the wiring path between IC dies increases. However, simply locating IC dies closer together to reduce the wiring path between the IC dies presents several difficulties. For one thing, configurations with a high concentration of IC dies are difficult to cool. Therefore, any reduction in propagation delay may be more than offset by a reduction in the operating speed of the IC dies.
Multi-chip modules, which are sometimes referred to as multi-chip carriers, have been proposed as a way to miniaturize electronic systems. Multi-chip modules are semiconductor die carriers that house multiple semiconductor IC dies. The multi-chip modules generally include an insulative housing that protects and supports the IC dies and a plurality of leads that extend from the housing to couple electrical signals to and from the IC dies. The IC dies are active components, such as a microprocessor die and a static random access memory (SRAM) die.
In conventional multi-chip modules, the insulative housing holds the IC dies in one of two different arrangements. In a first arrangement, the IC dies are mounted back-to-back to an insulative substrate. Alternatively, the IC dies are mounted side-by-side on a planar substrate.
The back-to-back arrangement has several deficiencies. For example, the back-to-back arrangement limits the number of IC dies that may be housed in a single package. In addition, the back-to-back arrangement does not permit efficient interconnection between the IC dies within the housing or the efficient tansfer of heat away from the IC dies. Moreover, in the back-to-back arrangement, the back of the dies are mounted to the interior of the module. This effectively traps heat in the module and, thus, limits the operation speed of the IC dies.
In the side-by-side arrangement, the IC dies in the multi-chip module are interconnected by a multilayer ceramic or multilayer printed circuit board (CB) interconnectors. However, the ceramic and PCB interconnectors are relatively expensive to manufacture. In addition, these interconnectors typically require numerous layers, which not only adds to the expense, but block the transfer of heat from the IC dies to the exterior of the multi-chip module, thereby preventing effective cooling of the IC dies. Because these interconnectors typically require numerous layers PCB size, as well as pad and trace size become an issue.
Accordingly, there exists a need in the art to provide an economical multi-chip module that supports high speed applications
SUMMARY OF THE INVENTION
The present invention has been made in view of the above circumstances and has as an object to provide a multi-chip module having an inexpensive and reliable interconnect system.
A further object of the present invention is to provide a multi-chip module that effectively supports high speed applications.
A further object of the invention is to provide a multi-chip module capable of efficiently transfering heat from the integrated circuit dies housed within the multi-chip module to the outside of the multi-chip module.
A further object of the invention is to provide a multi-chip module in which the die interconnect component includes logic for selectively routing signals between the integrated circuit dies mounted in the multi-chip module.
A further object of the invention is to provide a multi-chip module in which the integrated circuit die interconnect component has substantially the same thermal expansion coefficient as the integrated circuit dies.
Additional objects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
To achieve the objects and in accordance with the purpose of the invention, as embodied and broadly described herein, the invention comprises a multi-chip module for housing multiple integrated circuit dies that includes a housing, a plurality of electrically conductive leads held in the housing, first and second integrated circuit dies mounted within the housing, and an interconnect die mounted within the housing between the first and second integrated circuit dies. Each of the conductive leads includes an internal lead section extending within the housing and an external lead section extending outside of the housing. The interconnect die is electrically connected to the internal lead section of at least one of the electrically conductive leads. The interconnect die transmits signals between the first integrated circuit die, the second integrated circuit die, and the at least one conductive lead.
In one preferred embodiment, the interconnect die receives signals from the first integrated circuit die and outputs the received signals to the second integrated circuit die, and receives signals from the at least one conductive lead and outputs the received signals to at least one of the first and second integrated circuit dies.
The housing may include a plurality of insulative side walls that define at least a portion of the exterior surface of the housing, with the plurality of conductive leads held in the side walls, for example, in multiple, vertically-spaced tiers. The insulative side walls may receive the conductive leads in a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multi-chip module having interconnect dies does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multi-chip module having interconnect dies, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multi-chip module having interconnect dies will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2819916

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.